-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學(xué):追尋崇高景觀
物理學(xué)家用的張量和群論導(dǎo)論 版權(quán)信息
- ISBN:9787510070266
- 條形碼:9787510070266 ; 978-7-5100-7026-6
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
物理學(xué)家用的張量和群論導(dǎo)論 本書特色
this book is composed of two parts: part i (chaps. i through 3) is an introduction to tensors and their physical applications, and part ii (chaps. 4 through 6) introduces group theory and intertwines it with the earlier material. both parts are written at the advanced-undergraduate/beginning graduate level, although in the course of' part ii the sophistication level rises somewhat. though the two parts differ somewhat in flavor,l have aimed in both to fill a (perceived) gap in the literaiure by connecting the component formalisms prevalent in physics calculations to the abstract but more conceptual formulations found in the math literature. my firm beliefis that we need to see tensors and groups in coordinates to get a sense of how they work, but also need an abstract formulation to understand their essential nature and organize our thinking about them.
物理學(xué)家用的張量和群論導(dǎo)論 內(nèi)容簡介
這是一部講述張量和群論的物理學(xué)專業(yè)的教程,用直觀、嚴(yán)謹(jǐn)?shù)姆椒ń榻B張量和群論以及其在理論物理和應(yīng)用數(shù)學(xué)的重要性。本書旨在用一種比較獨特的框架,揭開張量的神秘面紗,使得讀者在經(jīng)典物理和量子物理的背景理解它。將物理計算中的許多流形公式和數(shù)學(xué)中的抽象的或者更加概念性公式的聯(lián)系起來,對張量和群論的的人來說,這項工作是很歡迎的。物理和應(yīng)用數(shù)學(xué)專業(yè)的高年級本科生和研究生都將受益于本書。讀者對象:數(shù)學(xué)、應(yīng)用數(shù)學(xué)以及物理專業(yè)的本科生、研究生和相關(guān)科研人員。
物理學(xué)家用的張量和群論導(dǎo)論 目錄
part i linear algebra and tensors
i a quicklntroduction to tensors
2 vectorspaces
2.1 definition and examples
2.2 span,linearlndependence,and bases
2.3 components
2.4 linearoperators
2.5 duaispaces
2.6 non-degenerate hermitian forms
2.7 non-degenerate hermitian forms and dual spaces
2.8 problems
3 tensors
3.1 definition and examples
3.2 changeofbasis
3.3 active and passive transformations
3.4 the tensor product-definition and properties
3.5 tensor products of v and v*
3.6 applications ofthe tensor product in classical physics
3.7 applications of the tensor product in quantum physics
3.8 symmetric tensors
3.9 antisymmetric tensors
3.10 problems
partll grouptheory
4 groups, lie groups,and lie algebras
4.1 groups-definition and examples
4.2 the groups ofclassical and quantum physics
4.3 homomorphismandlsomorphism
4.4 from lie groups to lie algebras
4.5 lie algebras-definition,properties,and examples
4.6 the lie algebras ofclassical and quantum physics
4.7 abstractliealgebras
4.8 homomorphism andlsomorphism revisited
4.9 problems
5 basic representation theory
5.1 representations: definitions and basic examples
5.2 furtherexamples
5.3 tensorproduet representations
5.4 symmetric and antisymmetric tensor product representations
5.5 equivalence ofrepresentations
5.6 direct sums andlrreducibility
5.7 moreonlrreducibility
5.8 thelrreducible representations ofsu(2),su(2) and s0(3)
5.9 reairepresentations andcomplexifications
5.10 the irreducible representations of st(2, c)nk, sl(2, c) ands0(3,1)o
5.11 irreducibility and the representations of 0(3, 1) and its double covers
5.12 problems
6 the wigner-eckart theorem and other applications
6.1 tensor operators, spherical tensors and representation operators
6.2 selection rules and the wigner-eckart theorem
6.3 gamma matrices and dirac bilinears
6.4 problems
appendix complexifications of real lie algebras and the tensor
product decomposition ofsl(2,c)rt representations
a.1 direct sums and complexifications oflie algebras
a.2 representations of complexified lie algebras and the tensor
product decomposition ofst(2,c)r representations
references
index
物理學(xué)家用的張量和群論導(dǎo)論 作者簡介
Nadir Jeevanjee是國際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
回憶愛瑪儂
- >
上帝之肋:男人的真實旅程
- >
名家?guī)阕x魯迅:朝花夕拾
- >
小考拉的故事-套裝共3冊
- >
名家?guī)阕x魯迅:故事新編
- >
月亮與六便士
- >
羅曼·羅蘭讀書隨筆-精裝
- >
我與地壇