-
>
2021年國家統(tǒng)一法律職業(yè)資格考試案例分析指導(dǎo)用書(全2冊)
-
>
新東方(2021)十天搞定考研詞匯(便攜版)
-
>
安全生產(chǎn)管理 2019版中級
-
>
馬克思主義基本原理概論 自學(xué)考試學(xué)習(xí)讀本 (2018年版)
-
>
中國近現(xiàn)代史綱要自學(xué)考試學(xué)習(xí)讀本(2018年版)
-
>
呼蘭河傳
-
>
長篇小說:格列佛游記
群論 版權(quán)信息
- ISBN:9787510078712
- 條形碼:9787510078712 ; 978-7-5100-7871-2
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
群論 本書特色
雷蒙德所著《群論》旨在為物理學(xué)家介紹群理論的許多有趣的數(shù)學(xué)方面,同時將數(shù)學(xué)家?guī)胛锢響?yīng)用。針對高年級本科生和研究生,書中給出了有限群和連續(xù)群的*全面的特點,并且強調(diào)在基礎(chǔ)物理中的應(yīng)用;展開討論了有限群,重點強調(diào)了不可約表示和不變性;詳細論述了李群,也用較多的筆墨講述了Kac-Moody代數(shù),包括Dynkin圖。
群論 內(nèi)容簡介
《群論》旨在為物理學(xué)家介紹群理論的許多有趣的數(shù)學(xué)方面,同時將數(shù)學(xué)家?guī)胛锢響?yīng)用。針對高年級本科生和研究生,書中給出了有限群和連續(xù)群的*全面的特點,并且強調(diào)在基礎(chǔ)物理中的應(yīng)用;展開討論了有限群,重點強調(diào)了不可約表示和不變性;詳細論述了李群,也用較多的筆墨講述了Kac-Moody代數(shù),包括Dynkin圖。
群論 目錄
2 Finite groups: an introduction
2.1 Group axioms
2.2 Finite groups of low order
2.3 Permutations
2.4 Basic concepts
2.4.1 Conjugation
2.4.2 Simple groups
2.4.3 Sylow's criteria
2.4.4 Semi-direct product
2.4.5 Young Tableaux
3 Finite groups: representations
3.1 Introduction
3.2 Schur's lemmas
3.3 The ,,44 character table
3.4 Kronecker products
3.5 Real and complex representations
3.6 Embeddings
3.7 Zn character table
3.8 Dn character table
3.9 Q2, character table
3.10 Some semi-direct products
3.11 Induced representations
3.12 Invariants
3.13 Coverings
4 Hilbert spaces
4.1 Finite Hilbert spaces
4.2 Fermi oscillators
4.3 Infinite Hilbert spaces
5 SU(2)
5.1 Introduction
5.2 Some representations
5.3 From Lie algebras to Lie groups
5.4 SU(2) → SU(1, 1)
5.5 Selected SU(2) applications
5.5.1 The isotropic harmonic oscillator
5.5.2 The Bohr atom
5.5.3 Isotopic spin
6 SU(3)
6.1 SU(3) algebra
6.2 α-Basis
6.3 β-Basis
6.4 α'-Basis
6.5 The triplet representation
6.6 The Chevalley basis
6.7 SU(3) in physics
6.7.1 The isotropic harmonic oscillator redux
6.7.2 The Elliott model
6.7.3 The Sakata model
6.7.4 The Eightfold Way
7 Classification of compact simple Lie algebras
7.1 Classification
7.2 Simple roots
7.3 Rank-two algebras
7.4 Dynkin diagrams
7.5 Orthonormal bases
8 Lie algebras: representation theory
8.1 Representation basics
8.2 A3 fundamentals
8.3 The Weyl group
8.4 Orthogonal Lie algebras
8.5 Spinor representations
8.5.1 SO(2n) spinors
8.5.2 SO(2n + 1) spinors
8.5.3 Clifford algebra construction
8.6 Casimir invariants and Dynkin indices
8.7 Embeddings
8.8 Oscillator representations
8.9 Verma modules
8.9.1 Weyl dimension formula
8.9.2 Verma basis
9 Finite groups: the road to simplicity
9.1 Matrices over Galois fields
9.1.1 PSL2(7)
9.1.2 A doubly transitive group
9.2 Chevalley groups
9.3 A fleeting glimpse at the sporadic groups
10 Beyond Lie algebras
10.1 Serre presentation
10.2 Affine Kac-Moody algebras
10.3 Super algebras
11 The groups of the Standard Model
11.1 Space-time symmetries
11.1.1 The Lorentz and Poincar6 groups
11.1.2 The conformal group
11.2 Beyond space-time symmetries
11.2.1 Color and the quark model
11.3 Invariant Lagrangians
11.4 Non-Abelian gauge theories
11.5 The Standard Model
11.6 Grand Unification
11.7 Possible family symmetries
11.7.1 Finite SU(2) and SO(3) subgroups
11.7.2 Finite SU(3) subgroups
12 Exceptional structures
12.1 Hurwitz algebras
12.2 Matrices over Hurwitz algebras
12.3 The Magic Square
Appendix 1 Properties of some finite groups
Appendix 2 Properties of selected Lie algebras
References
Index
群論 作者簡介
Pierre Ramond(P.雷蒙德,美國)是國際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
二體千字文
- >
李白與唐代文化
- >
月亮虎
- >
山海經(jīng)
- >
中國歷史的瞬間
- >
我從未如此眷戀人間
- >
名家?guī)阕x魯迅:朝花夕拾
- >
推拿