書(shū)馨卡幫你省薪 2024個(gè)人購(gòu)書(shū)報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)

凸優(yōu)化算法

出版社:清華大學(xué)出版社出版時(shí)間:2016-05-01
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 564
中 圖 價(jià):¥75.7(8.5折) 定價(jià)  ¥89.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車(chē) 收藏
運(yùn)費(fèi)6元,滿(mǎn)39元免運(yùn)費(fèi)
?新疆、西藏除外
本類(lèi)五星書(shū)更多>

凸優(yōu)化算法 版權(quán)信息

凸優(yōu)化算法 本書(shū)特色

本書(shū)幾乎囊括了所有主流的凸優(yōu)化算法。包括梯度法、次梯度法、多面體逼近法、鄰近法和內(nèi)點(diǎn)法等。這些方法通常依賴(lài)于代價(jià)函數(shù)和約束條件的凸性(而不一定依賴(lài)于其可微性),并與對(duì)偶性有著直接或間接的聯(lián)系。作者針對(duì)具體問(wèn)題的特定結(jié)構(gòu),給出了大量的例題,來(lái)充分展示算法的應(yīng)用。各章的內(nèi)容如下: 第1章,凸優(yōu)化模型概述; 第2章,優(yōu)化算法概述; 第3章,次梯度算法; 第4章,多面體逼近算法; 第5章,鄰近算法; 第6章,其他算法問(wèn)題。本書(shū)的一個(gè)特色是在強(qiáng)調(diào)問(wèn)題之間的對(duì)偶性的同時(shí),也十分重視建立在共軛概念上的算法之間的對(duì)偶性,這常常能為選擇合適的算法實(shí)現(xiàn)方式提供新的靈感和計(jì)算上的便利。

凸優(yōu)化算法 內(nèi)容簡(jiǎn)介

隨著大規(guī)模資源分配、信號(hào)處理、機(jī)器學(xué)習(xí)等應(yīng)用領(lǐng)域的快速發(fā)展,凸優(yōu)化近來(lái)正引起人們?nèi)找鏉夂竦呐d趣。本書(shū)力圖給大家較為全面通俗地介紹求解大規(guī)模凸優(yōu)化問(wèn)題的*算法。本書(shū)幾乎囊括了所有主流的凸優(yōu)化算法。包括梯度法,次梯度法,多面體逼近法,鄰近法和內(nèi)點(diǎn)法等。這些方法通常依賴(lài)于代價(jià)函數(shù)和約束條件的凸性(而不一定依賴(lài)于其可微性),并與對(duì)偶性有著直接或間接的聯(lián)系。作者針對(duì)具體問(wèn)題的特定結(jié)構(gòu),給出了大量的例題,來(lái)充分展示算法的應(yīng)用。  

凸優(yōu)化算法 目錄

contents 1. convex optimization models: an overview . . . . . . p. 1 1.1. lagrangeduality .......... .......... p.2 1.1.1. separable problems – decomposition . . . . . . . . . p. 7 1.1.2. partitioning .................... p.9 1.2. fenchel duality and conic programming . . . . . . . . . . p. 10 1.2.1. linearconicproblems . . . . . . . . . . . . . . . p.15 1.2.2. second order cone programming . . . . . . . . . . . p. 17 1.2.3. semide.nite programming . . . . . . . . . . . . . . p. 22 1.3. additivecostproblems . . . . . . . . . . . . . . . . . p.25 1.4. largenumberofconstraints . . . . . . . . . . . . . . . p.34 1.5. exactpenalty functions . . . . . . . . . . . . . . . . p.39 1.6. notes,sources,andexercises . . . . . . . . . . . . . . p.47 2. optimization algorithms: an overview . . . . . . . . p. 53 2.1. iterativedescentalgorithms . . . . . . . . . . . . . . . p.55 2.1.1. di.erentiable cost function descent – unconstrained . . . . problems ..................... p.58 2.1.2. constrained problems – feasible direction methods . . . p. 71 2.1.3. nondi.erentiable problems – subgradient methods . . . p. 78 2.1.4. alternative descent methods . . . . . . . . . . . . . p. 80 2.1.5. incrementalalgorithms . . . . . . . . . . . . . . . p.83 2.1.6. distributed asynchronous iterative algorithms . . . . p. 104 2.2. approximationmethods . . . . . . . . . . . . . . . p.106 2.2.1. polyhedral approximation . . . . . . . . . . . . . p. 107 2.2.2. penalty, augmented lagrangian, and interior . . . . . . . pointmethods .................. p.108 2.2.3. proximal algorithm, bundle methods, and . . . . . . . . . tikhonovregularization . . . . . . . . . . . . . . p.110 2.2.4. alternating direction method of multipliers . . . . . p. 111 2.2.5. smoothing of nondi.erentiable problems . . . . . . p. 113 2.3. notes,sources,andexercises . . . . . . . . . . . . . p.119 3. subgradientmethods . . . . . . . . . . . . . . . p.135 3.1. subgradients of convex real-valued functions . . . . . . p. 136 iv contents 3.1.1. characterization of the subdi.erential . . . . . . . . p. 146 3.2. convergence analysis of subgradient methods . . . . . . p. 148 3.3. .-subgradientmethods ................ p.162 3.3.1. connection with incremental subgradient methods . . p. 166 3.4. notes,sources,andexercises . . . . . . . . . . . . . . p.167 4. polyhedral approximation methods . . . . . . . . . p. 181 4.1. outer linearization – cutting plane methods . . . . . . p. 182 4.2. inner linearization – simplicial decomposition . . . . . . p. 188 4.3. duality of outer and inner linearization . . . . . . . . . p. 194 4.4. generalized polyhedral approximation . . . . . . . . . p. 196 4.5. generalized simplicial decomposition . . . . . . . . . . p. 209 4.5.1. di.erentiablecostcase . . . . . . . . . . . . . . p.213 4.5.2. nondi.erentiable cost and side constraints . . . . . p. 213 4.6. polyhedral approximation for conic programming . . . . p. 217 4.7. notes,sources,andexercises . . . . . . . . . . . . . . p.228 5. proximalalgorithms . . . . . . . . . . . . . . . p.233 5.1. basic theory of proximal algorithms . . . . . . . . . . p. 234 5.1.1. convergence ................... p.235 5.1.2. rateofconvergence. . . . . . . . . . . . . . . . p.239 5.1.3. gradient interpretation . . . . . . . . . . . . . . p. 246 5.1.4. fixed point interpretation, overrelaxation, . . . . . . . . . andgeneralization ................ p.248 5.2. dualproximalalgorithms . . . . . . . . . . . . . . . p.256 5.2.1. augmented lagrangian methods . . . . . . . . . . p. 259 5.3. proximal algorithms with linearization . . . . . . . . . p. 268 5.3.1. proximal cutting plane methods . . . . . . . . . . p. 270 5.3.2. bundlemethods ................. p.272 5.3.3. proximal inner linearization methods . . . . . . . . p. 276 5.4. alternating direction methods of multipliers . . . . . . . p. 280 5.4.1. applications in machine learning . . . . . . . . . . p. 286 5.4.2. admm applied to separable problems . . . . . . . p. 289 5.5. notes,sources,andexercises . . . . . . . . . . . . . . p.293 6. additional algorithmic topics . . . . . . . . . . . p. 301 6.1. gradientprojectionmethods . . . . . . . . . . . . . . p.302 6.2. gradient projection with extrapolation . . . . . . . . . p. 322 6.2.1. an algorithm with optimal iteration complexity . . . p. 323 6.2.2. nondi.erentiable cost – smoothing . . . . . . . . . p. 326 6.3. proximalgradientmethods . . . . . . . . . . . . . . p.330 6.4. incremental subgradient proximal methods . . . . . . . p. 340 6.4.1. convergence for methods with cyclic order . . . . . p. 344 contents 6.4.2. convergence for methods with randomized order . . p. 353 6.4.3. application in specially structured problems . . . . . p. 361 6.4.4. incremental constraint projection methods . . . . . p. 365 6.5. coordinatedescentmethods . . . . . . . . . . . . . . p.369 6.5.1. variants of coordinate descent . . . . . . . . . . . p. 373 6.5.2. distributed asynchronous coordinate descent . . . . p. 376 6.6. generalized proximal methods . . . . . . . . . . . . . p. 382 6.7. .-descent and extended monotropic programming . . . . p. 396 6.7.1. .-subgradients .................. p.397 6.7.2. .-descentmethod........ ......... p.400 6.7.3. extended monotropic programming duality . . . . . p. 406 6.7.4. special cases of strong duality . . . . . . . . . . . p. 408 6.8. interiorpointmethods . . . . . . . . . . . . . . . . p.412 6.8.1. primal-dual methods for linear programming . . . . p. 416 6.8.2. interior point methods for conic programming . . . . p. 423 6.8.3. central cutting plane methods . . . . . . . . . . . p. 425 6.9. notes,sources,andexercises . . . . . . . . . . . . . . p.426 appendix a: mathematical background . . . . . . . . p. 443 a.1. linearalgebra ........... ......... p.445 a.2. topologicalproperties . . . . . . . . . . . . . . . . p.450 a.3. derivatives ..................... p.456 a.4. convergencetheorems . . . . . . . . . . . . . . . . p.458 appendix b: convex optimization theory: a summary . p. 467 b.1. basic concepts of convex analysis . . . . . . . . . . . p. 467 b.2. basic concepts of polyhedral convexity . . . . . . . . . p. 489 b.3. basic concepts of convex optimization . . . . . . . . . p. 494 b.4. geometric duality framework . . . . . . . . . . . . . p. 498 b.5. duality andoptimization . . . . . . . . . . . . . . . p.505 references .............. ......... p.519 index ................. ......... p.557 
展開(kāi)全部

凸優(yōu)化算法 作者簡(jiǎn)介

德梅萃·博塞克斯(Dimitri P.Bertsekas),教授是優(yōu)化理論的國(guó)際學(xué)者、美國(guó)國(guó)家工程院院士,現(xiàn)任美國(guó)麻省理工學(xué)院電氣工程與計(jì)算機(jī)科學(xué)系教授,曾在斯坦福大學(xué)工程經(jīng)濟(jì)系和伊利諾伊大學(xué)電氣工程系任教,在優(yōu)化理論、控制工程、通信工程、計(jì)算機(jī)科學(xué)等領(lǐng)域有豐富的科研教學(xué)經(jīng)驗(yàn),成果豐碩。博塞克斯教授是一位多產(chǎn)作者,著有14本專(zhuān)著和教科書(shū)。

暫無(wú)評(píng)論……
書(shū)友推薦
本類(lèi)暢銷(xiāo)
返回頂部
中圖網(wǎng)
在線客服