書馨卡幫你省薪 2024個人購書報告 2024中圖網(wǎng)年度報告
歡迎光臨中圖網(wǎng) 請 | 注冊
> >>
數(shù)理金融基準分析方法

數(shù)理金融基準分析方法

作者:普拉滕
出版社:世界圖書出版公司出版時間:2016-05-01
開本: 32開 頁數(shù): 720
讀者評分:5分1條評論
本類榜單:自然科學銷量榜
中 圖 價:¥98.9(8.6折) 定價  ¥115.0 登錄后可看到會員價
加入購物車 收藏
運費6元,滿39元免運費
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

數(shù)理金融基準分析方法 版權信息

數(shù)理金融基準分析方法 本書特色

《數(shù)理金融基準分析法》分兩個部分。**部分介紹了概率理論、統(tǒng)計學、隨機微積分以及帶跳躍的隨機微分方程中的一些必要工具。第二部分專門介紹了基準分析法的金融建模。這一部分對衍生工具的真實世界定價與對沖的多種數(shù)量方法進行了解釋。其應用的一般性框架可以增進讀者對隨機波動率本質的了解。該書適用于數(shù)量分析師、研究生以及金融、經(jīng)濟和保險領域的從業(yè)人士。

數(shù)理金融基準分析方法 內容簡介

《數(shù)理金融基準分析法》分兩個部分。**部分介紹了概率理論、統(tǒng)計學、隨機微積分以及帶跳躍的隨機微分方程中的一些必要工具。第二部分專門介紹了基準分析法的金融建模。這一部分對衍生工具的真實世界定價與對沖的多種數(shù)量方法進行了解釋。其應用的一般性框架可以增進讀者對隨機波動率本質的了解。該書適用于數(shù)量分析師、研究生以及金融、經(jīng)濟和保險領域的從業(yè)人士。

數(shù)理金融基準分析方法 目錄

Basic Notation1 Preliminaries from Probability Theory 1.1 Discrete Random Variables and Distributions 1.2 Continuous Random Variables and Distributions 1.3 Moments of Random Variables 1.4 Joint Distributions and Random Vectors 1.5 Copulas (*) 1.6 Exercises for Chapter 12 Statistical Methods 2.1 Limit Theorems 2.2 Confidence Intervals 2.3 Estimation Methods 2.4 Maximum Likelihood Estimation 2.5 Normal Variance Mixture Models 2.6 Distribution of Index Log-Returns 2.7 Convergence of Random Sequences 2.8 Exercises for Chapter 23 Modeling via Stochastic Processes 3.1 Introduction to Stochastic Processes 3.2 Certain Classes of Stochastic Processes 3.3 Discrete Time Markov Chains 3.4 Continuous Time Markov Chains 3.5 Poisson Processes 3.6 Levy Processes (*) 3.7 Insurance Risk Modeling (*) 3.8 Exercises for Chapter 34 Diffusion Processes 4.1 Continuous Markov Processes 4.2 Examples for Continuous Markov Processes 4.3 Diffusion Processes 4.4 Kolmogorov Equations 4.5 Diffusions with Stationary Densities 4.6 Multi-Dimensional Diffusion Processes (*) 4.7 Exercises for Chapter 45 Martingales and Stochastic Integrals 5.1 Martingales 5.2 Quadratic Variation and Covariation 5.3 Gains from Trade as Stochastic Integral 5.4 It5 Integral for Wiener Processes 5.5 Stochastic Integrals for Semimartingales (*) 5.6 Exercises for Chapter 56 The It6 Formula 6.1 The Stochastic Chain Rule 6.2 Multivariate It5 Formula 6.3 Some Applications of the It5 Formula 6.4 Extensions of the It5 Formula 6.5 Levy's Theorem (*) 6.6 A Proof of the It5 Formula (*) 6.7 Exercises for Chapter 67 Stochastic Differential Equations 7.1 Solution of a Stochastic Differential Equation 7.2 Linear SDE with Additive Noise 7.3 Linear SDE with Multiplicative Noise 7.4 Vector Stochastic Differential Equations 7.5 Constructing Explicit Solutions of SDEs 7.6 Jump Diffusions (*) 7.7 Existence and Uniqueness (*) 7.8 Markovian Solutions of SDEs (*) 7.9 Exercises for Chapter 78 Introduction to Option Pricing 8.1 Options 8.2 Options under the Black-Scholes Model 8.3 The Black-Scholes Formula 8.4 Sensitivities for European Call Option 8.5 European Put Option 8.6 Hedge Simulation 8.7 Squared Bessel Processes (*) 8.8 Exercises for Chapter 89 Various Approaches to Asset Pricing 9.1 Real World Pricing 9.2 Actuarial Pricing 9.3 Capital Asset Pricing Model 9.4 Risk Neutral Pricing 9.5 Girsanov Transformation and Bayes Rule (*) 9.6 Change of Numeraire (*) 9.7 Feynman-Kac Formula (*) 9.8 Exercises for Chapter 910 Continuous Financial Markets 10.1 Primary Security Accounts and Portfolios 10.2 Growth Optimal Portfolio 10.3 Supermartingale Property 10.4 Real World Pricing 10.5 GOP as Best Performing Portfolio 10.6 Diversified Portfolios in CFMs 10.7 Exercises for Chapter 1011 Portfolio Optimization 11.1 Locally Optimal Portfolios 11.2 Market Portfolio and GOP 11.3 Expected Utility Maximization 11.4 Pricing Nonreplicable Payoffs 11.5 Hedging 11.6 Exercises for Chapter 1112 Modeling Stochastic Volatility 12.1 Stochastic Volatility 12.2 Modified CEV Model 12.3 Local Volatility Models 12.4 Stochastic Volatility Models 12.5 Exercises for Chapter 1213 Minimal Market Model 13.1 Parametrization via Volatility or Drift 13.2 Stylized Minimal Market Model 13.3 Derivatives under the MMM 13.4 MMM with Random Scaling (*) 13.5 Exercises for Chapter 1314 Markets with Event Risk 14.1 Jump Diffusion Markets 14.2 Diversified Portfolios 14.3 Mean-Variance Portfolio Optimization 14.4 Real World Pricing for Two Market Models 14.5 Exercises for Chapter 1415 Numerical Methods 15.1 Random Number Generation 15.2 Scenario Simulation 15.3 Classical Monte Carlo Method 15.4 Monte Carlo Simulation for SDEs 15.5 Variance Reduction of Functionals of SDE 15.6 Tree Methods 15.7 Finite Difference Methods 15.8 Exercises for Chapter 1516 Solutions for Exercises AcknowledgementsReferencesAuthor IndexIndex
展開全部

數(shù)理金融基準分析方法 作者簡介

Eckhard Platen(E. 普拉滕, 澳大利亞) 是國際知名學者,在數(shù)學界享有盛譽。本書凝聚了作者多年科研和教學成果,適用于科研工作者、高校教師和研究生。

商品評論(1條)
  • 主題:很不錯的一本數(shù)理金融參考書

    內容比較深入淺出,適合作為研究生階段初步接觸學科用

    2021/8/1 8:20:32
    讀者:Mss***(購買過本書)
書友推薦
編輯推薦
返回頂部
中圖網(wǎng)
在線客服