場(chǎng)論的路徑積分方法-第2版 版權(quán)信息
- ISBN:9787519224127
- 條形碼:9787519224127 ; 978-7-5192-2412-7
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類:>>
場(chǎng)論的路徑積分方法-第2版 本書(shū)特色
《場(chǎng)論的路徑積分方法》( 第2版)首先回顧了量子力學(xué)的一些基本概念,并引入量子力學(xué)中所謂路徑積分的概念,然后闡明如何在場(chǎng)論中引入相應(yīng)的路徑積分。在隨后的各章中,簡(jiǎn)單明了給出路徑積分方法在場(chǎng)論中幾種*基本的應(yīng)用。本書(shū)是進(jìn)一步深入學(xué)習(xí)和研究路徑積分方法不可或缺的參考書(shū)。第2版在第1版的基礎(chǔ)上做了修訂,其中擴(kuò)充了超對(duì)稱一章內(nèi)容,新增規(guī)范理論和異常這2章新內(nèi)容。適用于高能物理、凝聚態(tài)物理等專業(yè)研究生。
場(chǎng)論的路徑積分方法-第2版 內(nèi)容簡(jiǎn)介
《場(chǎng)論的路徑積分方法》( 第2版)首先回顧了量子力學(xué)的一些基本概念,并引入量子力學(xué)中所謂路徑積分的概念,然后闡明如何在場(chǎng)論中引入相應(yīng)的路徑積分。在隨后的各章中,簡(jiǎn)單明了給出路徑積分方法在場(chǎng)論中幾種*基本的應(yīng)用。本書(shū)是進(jìn)一步深入學(xué)習(xí)和研究路徑積分方法不可或缺的參考書(shū)。第2版在第1版的基礎(chǔ)上做了修訂,其中擴(kuò)充了超對(duì)稱一章內(nèi)容,新增規(guī)范理論和異常這2章新內(nèi)容。適用于高能物理、凝聚態(tài)物理等專業(yè)研究生。
場(chǎng)論的路徑積分方法-第2版 目錄
Preface to the First Edition
Preface to the Second Edition
1.Introduction
1.1 Particles and Fields
1.2 Metric and Other Notations
1.3 Functionals
1.4 Review of Quantum Mechanics
1.5 References
2.Path Integrals and Quantum Mechanics
2.1 Basis States
2.2 Operator Ordering
2.3 The Classical Limit
2.4 Equivalence with the Schr5dinger Equation
2.5 Free Particle
2.6 References
3.Harmonic Oscillator
3.1 Path Integral for the Harmonic Oscillator
3.2 Method of Fourier Transform
3.3 Matrix Method
3.4 The Classical Action
3.5 References
4.Generating Functional
4.1 Euclidean Rotation
4.2 Time Ordered Correlation Functions
4.3 Correlation Functions in Definite States
4.4 Vacuum Functional
4.5 Anharmonic Oscillator
4.6 References
5.Path Integrals for Fermions
5.1 Fermionic Oscillator
5.2 Grassmann Variables
5.3 Generating Functional
5.4 Feynman Propagator
5.5 The Fermion Determinant
5.6 References
6.Supersymmetry
6.1 Supersymmetric Oscillator
6.2 Supersymmetric Quantum Mechanics
6.3 Shape Invariance
6.4 Example
6.5 Supersymmetry and Singular Potentials
6.5.1 Regularized Superpotential
6.5.2 Alternate Regularization
6.6 References
7.Semi-Classical Methods
7.1 WKB Approximation
7.2 Saddle Point Method
7.3 Semi-Classical Methods in Path Integrals
7.4 Double Well Potential
7.5 References
8.Path Integral for the Double Well
8.1 Instantons
8.2 Zero Modes
8.3 The Instanton Integral
8.4 Evaluating the Determinant
8.5 Multi-Instanton Contributions
8.6 References
9.Path Integral for Relativistic Theories
9.1 Systems with Many Degrees of Freedom
9.2 Relativistic Scalar Field Theory
9.3 Feynman Rules
9.4 Connected Diagrams
9.5 References
10.Effective Action
10.1 The Classical Field
10.2 Effective Action
10.3 Loop Expansion
10.4 Effective Potential at One Loop
10.5 References
11.Invarianees and Their Consequences
11.1 Symmetries of the Action
11.2 Noether's Theorem
11.2.1 Example
11.3 Complex Scalar Field
11.4 Ward Identities
11.5 Spontaneous Symmetry Breaking
11.6 Goldstone Theorem
11.7 References
12.Gauge Theories
12.1 Maxwell Theory
12.2 Non-Abelian Gauge Theory
12.3 Path Integral for Gauge Theories
12.4 BRST Invariance
12.5 Ward Identities
12.6 References
13.Anomalies
13.1 Anomalous Ward Identity
13.2 Schwinger Model
13.3 References
14.Systems at Finite Temperature
14.1 Statistical Mechanics
14.2 Critical Exponents
14.3 Harmonic Oscillator
14.4 Fermionic Oscillator
14.5 References
15.Ising Model
15.1 One Dimensional Ising Model
15.2 The Partition Function
15.3 Two Dimensional Ising Model
15.4 Duality
15.5 High and Low Temperature Expansions
15.6 Quantum Mechanical Model
15.7 Duality in the Quantum System
15.8 References
Index
展開(kāi)全部
場(chǎng)論的路徑積分方法-第2版 作者簡(jiǎn)介
Ashok Das是美國(guó)Rochester知名教授,本書(shū)是唯一一部場(chǎng)論路徑積分的圖書(shū),第2版在初版基礎(chǔ)上新增2章內(nèi)容。