量子力學(xué)導(dǎo)論Quantum Mechanics an Introduction 版權(quán)信息
- ISBN:9787519255312
- 條形碼:9787519255312 ; 978-7-5192-5531-2
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
量子力學(xué)導(dǎo)論Quantum Mechanics an Introduction 本書特色
德國著名理論物理學(xué)家W.Griner等教授撰寫的13卷集“理論物理學(xué)教科書”,是一套內(nèi)容完整實用面向大學(xué)生和碩士研究生的現(xiàn)代物理學(xué)教材,各卷內(nèi)容獨立完整。它以系統(tǒng)的、統(tǒng)一的、連貫的方式闡述了現(xiàn)代理論物理學(xué)的各個方面。這套教材面世后,在德國產(chǎn)生了巨大的影響,其英文版的及時推出,對全世界理論物理學(xué)的教學(xué)也起了很好的促進(jìn)作用。本書內(nèi)容包括:物理量的量子化;輻射定律;物質(zhì)的波動性;量子力學(xué)的數(shù)學(xué)基礎(chǔ)Ⅰ;數(shù)學(xué)補充;薛定諤方程;諧振子;經(jīng)典力學(xué)向量子力學(xué)的過渡;磁場中的帶電粒子;量子力學(xué)的數(shù)學(xué)基礎(chǔ)Ⅱ;微擾論;自旋;含自旋的非相對論波方程;量子力學(xué)多體問題初步;全同粒子;量子力學(xué)的形式結(jié)構(gòu);量子力學(xué)的概念及哲學(xué)問題。
量子力學(xué)導(dǎo)論Quantum Mechanics an Introduction 內(nèi)容簡介
德國著名理論物理學(xué)家W.Griner等教授撰寫的13卷集“理論物理學(xué)教科書”,是一套內(nèi)容完整實用面向大學(xué)生和碩士研究生的現(xiàn)代物理學(xué)教材,各卷內(nèi)容獨立完整。它以系統(tǒng)的、統(tǒng)一的、連貫的方式闡述了現(xiàn)代理論物理學(xué)的各個方面。這套教材面世后,在德國產(chǎn)生了巨大的影響,其英文版的及時推出,對全世界理論物理學(xué)的教學(xué)也起了很好的促進(jìn)作用。本書內(nèi)容包括:物理量的量子化;輻射定律;物質(zhì)的波動性;量子力學(xué)的數(shù)學(xué)基礎(chǔ)Ⅰ;數(shù)學(xué)補充;薛定諤方程;諧振子;經(jīng)典力學(xué)向量子力學(xué)的過渡;磁場中的帶電粒子;量子力學(xué)的數(shù)學(xué)基礎(chǔ)Ⅱ;微擾論;自旋;含自旋的非相對論波方程;量子力學(xué)多體問題初步;全同粒子;量子力學(xué)的形式結(jié)構(gòu);量子力學(xué)的概念及哲學(xué)問題。
量子力學(xué)導(dǎo)論Quantum Mechanics an Introduction 目錄
1.The Quantization of Physical Quantifies
1.1 Light Quanta
1.2 The Photoelectric Effect
1.3 The Compton Effect
1.4 The Ritz Combination Principle
1.5 The Franck-Hertz Experiment
1.6 The Stem-Gerlach Experiment
1.7 Biographical Notes
2.The Radiation Laws
2.1 A Preview of the Radiation of Bodies
2.2 What is Cavity Radiation?
2.3 The Rayleigh-Jeans Radiation Law:The Electromagnetic Eigenmodes of a Cavity
2.4 Planck's Radiation Law
2.5 Biographical Notes
3.Wave Aspects of Matter
3.1 De Broglie Waves
3.2 The Diffraction of Matter Waves
3.3 The Statistical Interpretation of Matter Waves
3.4 Mean (Expectation) Values in Quantum Mechanics
3.5 Three Quantum Mechanical Operators
3.6 The Superposition Principle in Quantum Mechanics
3.7 The Heisenberg Uncertainty Principle
3.8 Biographical Notes
4.Mathematical Foundations of Quantum Mechanics I
4.1 Properties of Operators
4.2 Combining Two Operators
4.3 Bra and Ket Notation
4.4 Eigenvalues and Eigenfunctions
4.5 Measurability of Different Observables at Equal Times
4.6 Position and Momentum Operators
4.7 Heisenberg's Uncertainty Relations for Arbitrary Observables
4.8 Angular-Momentum Operators
4.9 Kinetic Energy
4.10 Total Energy
4.11 Biographical Notes
5.Mathematical Supplement
5.1 Eigendifferentials and the Normalization of Eigenfunctions for Continuous Spectra
5.2 Expansion into Eigenfunctions
6.The Schrodinger Equation
6.1 The Conservation of Particle Number in Quantum Mechanics
6.2 Stationary States
6.3 Properties of Stationary States
6.4 Biographical Notes
7.The Harmonic Oscillator
7.1 The Solution of the Oscillator Equation
7.2 The Description of the Harmonic Oscillator by Creation and Annihilation Operators
7.3 Properties of the Operators a and a+
7.4 Representation of the Oscillator Hamiltonian in Terms of a and a+
7.5 Interpretation of a and a+
7.6 Biographical Notes
8.The Transition from Classical to Quantum Mechanics
8.1 Motion of the Mean Values
8.2 Ehrenfest's Theorem
8.3 Constants of Motion, Laws of Conservation
8.4 Quantization in Curvilinear Coordinates
8.5 Biographical Notes
9.Charged Particles in Magnetic Fields
9.1 Coupling to the Electromagnetic Field
9.2 The Hydrogen Atom
9.3 Three-Dimensional Electron Densities
9.4 The Spectrum of Hydrogen Atoms
9.5 Currents in the Hydrogen Atom
9.6 The Magnetic Moment
9.7 Hydrogen-like Atoms
9.8 Biographical Notes
10.The Mathematical Foundations of Quantum Mechanics II
10.1 Representation Theory
10.2 Representation of Operators
10.3 The Eigenvalue Problem
10.4 Unitary Transformations
10.5 The S Matrix
10.6 The Schrodinger Equation in Matrix Form
10.7 The Schrtdinger Representation
10.8 The Heisenberg Representation
10.9 The Interaction Representation
10.10 Biographical Notes
11.Perturbation Theory
11.1 Stationary Perturbation Theory
11.2 Degeneracy
11.3 The Ritz Variational Method
11.4 Time-Dependent Perturbation Theory
11.5 Time-Independent Perturbation
11.6 Transitions Between Continuum States
11.7 Biographical Notes
12.Spin
12.1 Doublet Splitting
12.2 The Einstein-de Haas Experiment
12.3 The Mathematical Description of Spin
12.4 Wave Functions with Spin
12.5 The Pauli Equation
12.6 Biographical Notes
13.A Nonreintivistic Wave Equation with Spin
13.1 The Linearization of the Schrtdinger Equation
13.2 Particles in an External Field and the Magnetic Moment
14.Elementary Aspects of the Quantum-Mechanical Many-Body Problem
14.1 The Conservation of the Total Momentum of a Particle System
14.2 Centre-of-Mass Motion of a System of Particles in Quantum Mechanics
14.3 Conservation of Total Angular Momentum in a Quantum-Mechanical Many-Particle System
14.4 Small Oscillations in a Many-Particle System
14.5 Biographical Notes
15.Identical Particles
15.1 The Pauli Principle
15.2 Exchange Degeneracy
15.3 The Slater Determinant
15.4 Biographical Notes
16.The Formal Framework of Quantum Mechanics
16.1 The Mathematical Foundation of Quantum Mechanics:Hilbert Space
16.2 Operators in Hilbert Space
16.3 Eigenvalues and Eigenvectors
16.4 Operators with Continuous or Discrete-Continuous (Mixed) Spectra
16.5 Operator Functions
16.6 Unitary Transformations
16.7 The Direct-Product Space
16.8 The Axioms of Quantum Mechanics
16.9 Free Particles
16.10 A Summary of Perturbation Theory
17.Conceptual and Philosophical Problems of Quantum Mechanics
17.1 Determinism
17.2 Locality
17.3 Hidden-Variable Theories
17.4 Bell's Theorem
17.5 Measurement Theory
17.6 Schrodinger's Cat
17.7 Subjective Theories
17.8 Classical Measurements
17.9 The Copenhagen Interpretation
17.10 Indelible Recording
17.11 The Splitting Universe
17.12 The Problem of Reality
Subject Index
展開全部
量子力學(xué)導(dǎo)論Quantum Mechanics an Introduction 作者簡介
本書作者W. Griner是德國理論物理學(xué)家,著有13卷集的“理論物理學(xué)教程”,這套書也讓作者享譽全世界,成為全球眾多高校物理學(xué)高年級本科生和研究生的教材和標(biāo)準(zhǔn)參考用書。