掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學:追尋崇高景觀
概率論入門 版權信息
- ISBN:9787510058271
- 條形碼:9787510058271 ; 978-7-5100-5827-1
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
概率論入門 內容簡介
本書是一部十分經典的概率論教程。1999年初版,2001年第2次重印,2003年第3次重印,同年第4次重印,2005年第5次重印,受歡迎程度可見一斑。大多數概率論書籍是寫給數學家看的,漂亮的數學材料是吸引讀者的一大亮點;相反地,本書目標讀者是數學及非數學專業(yè)的研究生,幫助那些在統(tǒng)計、應用概率論、生物、運籌學、數學金融和工程研究中需要深入了解高等概率論的所有人員。
概率論入門 目錄
Preface
1 Sets and Events
1.1 Introduction
1.2 Basic Set Theory
1.2.1 Indicator functions
1.3 Limits of Sets
1.4 Monotone Sequences
1.5 Set Operations and Closure
1.5.1 Examples
1.6 The σ-field Generated by a Given Class C
1.7 Borel Sets on the Real Line
1.8 Comparing Borel Sets
1.9 Exercises
2 Probability Spaces
2.1 Basic Definitions and Properties
2.2 More on Closure
2.2.1 Dynkin's theorem
2.2.2 Proof of Dynkin's theorem
2.3 Two Constructions
2.4 Constructions of Probability Spaces
2.4.1 General Construction of a Probability Model
2.4.2 Proof of the Second Extension Theorem
2.5 Measure Constructions
2.5.1 Lebesgue Measure on (0,1]
2.5.2 Construction of a Probability Measure on R with Given Distribution Function F(x)
2.6 Exercises
3 Random Variables,Elements,and Measurable Maps
3.1 Inverse Maps
3.2 Measurable Maps,Random Elements, Induced Probability Measures
3.2.1 Composition
3.2.2 Random Elements of Metric Spaces
3.2.3 Measurability and Continuity
3.2.4 Measurability and Limits
3.3 σ-Fields Generated by Maps
3.4 Exercises
4 Independence
4.1 Basic Definitions
4.2 Independent Random Variables
4.3 Two Examples of Independence
4.3.1 Records,Ranks,Renyi Theorem
4.3.2 Dyadic Expansions of Uniform Random Numbers
4.4 More on Independence:Groupings
4.5 Independence,Zero-One Laws,Borel-Cantelli Lemma
4.5.1 Borel-Cantelli Lemma
4.5.2 Borel Zero-One Law
4.5.3 Kolmogorov Zero-One Law
4.6 Exercises
5 Integration and Expectation
5.1 Preparation for Integration
5.1.1 Simple Functions
5.1.2 Measurability and Simple Functions
5.2 Expectation and Integration
5.2.1 Expectation of Simple Functions
5.2.2 Extension of the Definition
5.2.3 Basic Properties of Expectation
5.3 Limits and Integrals
5.4 Indefinite Integrals
5.5 The Transformation Theorem and Densities
5.5.1 Expectation is Always an Integral on R
5.5.2 Densities
5.6 The Riemann vs Lebesgue Integral
5.7 Product Spaces
5.8 Probability Measures on Product Spaces
5.9 Fubini's theorem
5.10 Exercises
6 Convergence Concepts
6.1 Almost Sure Convergence
6.2 Convergence in Probability
6.2.1 Statistical Terminology
6.3 Connections Between a.s.and i.p.Convergence
6.4 Quantile Estimation
6.5 Lp Convergence
6.5.1 Uniform Integrability
6.5.2 Interlude:A Review of Inequalities
6.6 More on Lp Convergence
6.7 Exercises
7 Laws of Large Numbers and Sums of Independent Random Variables
7.1 Truncation and Equivalence
7.2 A General Weak Law of Large Numbers
7.3 Almost Sure Convergence of Sums of Independent Random Variables
7.4 Strong Laws of Large Numbers
7.4.1 Two Examples
7.5 The Strong Law of Large Numbers for IID Sequences
7.5.1 Two Applications of the SLLN
7.6 The Kolmogorov Three Series Theorem
7.6.1 Necessity of the Kolmogorov Three Series Theorem
7.7 Exercises
8 Convergence in Distribution
8.1 Basic Definitions
8.2 Scheffe's lemma
8.2.1 Scheffe's lemma and Order Statistics
8.3 The Baby Skorohod Theorem
8.3.1 The Delta Method
8.4 Weak Convergence Equivalences; Portmanteau Theorem
8.5 More Relations Among Modes of Convergence
8.6 New Convergences from Old
8.6.1 Example:The Central Limit Theorem for m-Dependent Random Variables
8.7 The Convergence to Types Theorem
8.7.1 Application of Convergence to Types: Limit Distributions for Extremes
8.8 Exercises
9 Characteristic Functions and the Central Limit Theorem
9.1 Review of Moment Generating Functions and the Central Limit Theorem
9.2 Characteristic Functions:Definition and First Properties
9.3 Expansions
9.3.1 Expansion of eix
9.4 Moments and Derivatives
9.5 Two Big Theorems: Uniqueness and Continuity
9.6 The Selection Theorem,Tightness,and Prohorov's theorem
9.6.1 The Selection Theorem
9.6.2 Tightness,Relative Compactness, and Prohorov's theorem
9.6.3 Proof of the Continuity Theorem
9.7 The Classical CLT for iid Random Variables
9.8 The Lindeberg-Feller CLT
9.9 Exercises
10 Martingales
10.1 Prelude to Conditional Expectation: The Radon-Nikodym Theorem
10.2 Definition of Conditional Expectation
10.3 Properties of Conditional Expectation
10.4 Martingales
10.5 Examples of Martingales
10.6 Connections between Martingales and Submartingales
10.6.1 Doob's Decomposition
10.7 Stopping Times
10.8 Positive Super Martingales
10.8.1 Operations on Supermartingales
10.8.2 Upcrossings
10.8.3 Boundedness Properties
10.8.4 Convergence of Positive Super Martingales
10.8.5 Closure
10.8.6 Stopping Supermartingales
10.9 Examples
10.9.1 Gambler's Ruin
10.9.2 Branching Processes
10.9.3 Some Differentiation Theory
10.10 Martingale and Submartingale Convergence
10.10.1 Krickeberg Decomposition
10.10.2 Doob's (Sub) martingale Convergence Theorem
10.11 Regularity and Closure
10.12 Regularity and Stopping
10.13 Stopping Theorems
10.14 Wald's Identity and Random Walks
10.14.1 The Basic Martingales
10.14.2 Regular Stopping Times
10.14.3 Examples of Integrable Stopping Times
10.14.4 The Simple Random Walk
10.15 Reversed Martingales
10.16 Fundamental Theorems of Mathematical Finance
10.16.1 A Simple Market Model
10.16.2 Admissible Strategies and Arbitrage
10.16.3 Arbitrage and Martingales
10.16.4 Complete Markets
10.16.5 Option Pricing
10.17 Exercises
References
Index
展開全部
概率論入門 作者簡介
[美]雷斯尼克,Sidney I. Resnick,美國運籌學與工業(yè)工程學院(school of operations research and industrial engineering)教授。
書友推薦
- >
龍榆生:詞曲概論/大家小書
- >
名家?guī)阕x魯迅:故事新編
- >
山海經
- >
月亮與六便士
- >
羅曼·羅蘭讀書隨筆-精裝
- >
李白與唐代文化
- >
人文閱讀與收藏·良友文學叢書:一天的工作
- >
莉莉和章魚
本類暢銷