-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡(jiǎn)史
-
>
浪漫地理學(xué):追尋崇高景觀
非線性分析方法 版權(quán)信息
- ISBN:9787510075933
- 條形碼:9787510075933 ; 978-7-5100-7593-3
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無
- 重量:暫無
- 所屬分類:>>
非線性分析方法 本書特色
張恭慶編著的《非線性分析方法》內(nèi)容介紹: The book is the result of many years of revision of the author's lecture notes. Some of the more involved sections were originally used in seminars as introductory parts of some new subjects. However, due to their importance,the materials have been reorganized and supplemented, so that they may be more valuable to the readers.
非線性分析方法 內(nèi)容簡(jiǎn)介
張恭慶編著的《非線性分析方法》內(nèi)容介紹: the book is the result of many years of revision of the author's lecture notes. some of the more involved sections were originally used in seminars as introductory parts of some new subjects. however, due to their importance,the materials have been reorganized and supplemented, so that they may be more valuable to the readers.
非線性分析方法 目錄
1.1 differential calculus in banach spaces
1.1.1 frechet derivatives and gateaux derivatives
1.1.2 nemytscki operator
1.1.3 high-order derivatives
1.2 implicit function theorem and continuity method
1.2.1 inverse function theorem
1.2.2 applications
1.2.3 continuity method
1.3 lyapunov-schmidt reduction and bifurcation
1.3.1 bifurcation
1.3.2 lyapunov-schmidt reduction
1.3.3 a perturbation problem
1.3.4 gluing
1.3.5 transversality
1.4 hard implicit function theorem
1.4.1 the small divisor problem
1.4.2 nash-moser iteration
2 fixed-point theorems
2.1 order method
2.2 convex function and its subdifferentials
2.2.1 convex functions
2.2.2 subdifferentials
2.3 convexity and compactness
2.4 nonexpansive maps
2.5 monotone mappings
2.6 maximal monotone mapping
3 degree theory and applications
3.1 the notion of topological degree
3.2 fundamental properties and calculations of brouwer degrees
3.3 applications of brouwer degree
3.3.1 brouwer fixed-point theorem
3.3.2 the borsuk-ulam theorem and its consequences
3.3.3 degrees for s1 equivariant mappings
3.3.4 intersection
3.4 leray-schauder degrees
3.5 the global bifurcation
3.6 applications
3.6.1 degree theory on closed convex sets
3.6.2 positive solutions and the scaling method
3.6.3 krein-rutman theory for positive linear operators
3.6.4 multiple solutions
3.6.5 a free boundary problem
3.6.6 bridging
3.7 extensions
3.7.1 set-valued mappings
3.7.2 strict set contraction mappings and condensing mappings
3.7.3 fredholm mappings
4 minimization methods
4.1 variational principles
4.1.1 constraint problems
4.1.2 euler-lagrange equation
4.1.3 dual variational principle
4.2 direct method
4.2.1 fundamental principle
4.2.2 examples
4.2.3 the prescribing gaussian curvature problem and the schwarz symmetric rearrangement
4.3 quasi-convexity
4.3.1 weak continuity and quasi-convexity
4.3.2 morrey theorem
4.3.3 nonlinear elasticity
4.4 relaxation and young measure
4.4.1 relaxations
4.4.2 young measure
4.5 other function spaces
4.5.1 bv space
4.5.2 hardy space and bmo space
4.5.3 compensation compactness
4.5.4 applications to the calculus of variations
4.6 free discontinuous problems
4.6.1 f-convergence
4.6.2 a phase transition problem
4.6.3 segmentation and mumford-shah problem
4.7 concentration compactness
4.7.1 concentration function
4.7.2 the critical sobolev exponent and the best constants
4.8 minimax methods
4.8.1 ekeland variational principle
4.8.2 minimax principle
4.8.3 applications
5 topological and variational methods
5.1 morse theory
5.1.1 introduction
5.1.2 deformation theorem
5.1.3 critical groups
5.1.4 global theory
5.1.5 applications
5.2 minimax principles (revisited)
5.2.1 a minimax principle
5.2.2 category and ljusternik-schnirelmann multiplicity theorem
5.2.3 cap product
5.2.4 index theorem
5.2.5 applications
5.3 periodic orbits for hamiltonian system and weinstein conjecture
5.3.1 hamiltonian operator
5.3.2 periodic solutions
5.3.3 weinstein conjecture
5.4 prescribing gaussian curvature problem on s2
5.4.1 the conformal group and the best constant
5.4.2 the palais-smale sequence
5.4.3 morse theory for the prescribing gaussian curvature equation on s2
5.5 conley index theory
5.5.1 isolated invariant set
5.5.2 index pair and conley index
5.5.3 morse decomposition on compact invariant sets and its extension
notes
references
非線性分析方法 作者簡(jiǎn)介
作者張恭慶是國(guó)際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
中國(guó)歷史的瞬間
- >
史學(xué)評(píng)論
- >
上帝之肋:男人的真實(shí)旅程
- >
苦雨齋序跋文-周作人自編集
- >
名家?guī)阕x魯迅:朝花夕拾
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
小考拉的故事-套裝共3冊(cè)
- >
巴金-再思錄