書馨卡幫你省薪 2024個人購書報告 2024中圖網(wǎng)年度報告
歡迎光臨中圖網(wǎng) 請 | 注冊

挖掘社交網(wǎng)絡

出版社:東南大學出版社出版時間:2019-06-01
開本: 24cm 頁數(shù): 24,400頁
中 圖 價:¥93.0(7.5折) 定價  ¥124.0 登錄后可看到會員價
加入購物車 收藏
運費6元,滿39元免運費
?新疆、西藏除外
本類五星書更多>

挖掘社交網(wǎng)絡 版權信息

挖掘社交網(wǎng)絡 內容簡介

  社交網(wǎng)站數(shù)據(jù)如同深埋地下的“金礦”,如何利用這些數(shù)據(jù)來發(fā)現(xiàn)哪些人正通過社交媒介進行聯(lián)系?他們正在談論什么?或者他們在哪兒?《挖掘社交網(wǎng)絡(影印版 第3版 英文版)》第2版對上一版內容進行了全面更新和修訂,它將揭示回答這些問題的方法與技巧。你將學到如何獲取、分析和匯總散落于社交網(wǎng)站(包括Facebook、Twitter、LinkedIn、Google+、GitHub、郵件、網(wǎng)站和博客等)的數(shù)據(jù),以及如何通過可視化找到你一直在社交世界中尋找的內容和你聞所未聞的有用信息。

挖掘社交網(wǎng)絡 目錄

Preface
Part I. A Guided Tour of the Social Web
Prelude
1. Mining Twitter: Exploring Trending Topics, Discovering What People Are Talking About, and More
1.1 Overview
1.2 Why Is Twitter All the Rage?
1.3 Exploring Twitter's API
1.3.1 Fundamental Twitter Terminology
1.3.2 Creating a Twitter API Connection
1.3.3 Exploring Trending Topics
1.3.4 Searching for Tweets
1.4 Analyzing the 140 (or More) Characters
1.4.1 Extracting Tweet Entities
1.4.2 Analyzing Tweets and Tweet Entities with Frequency Analysis
1.4.3 Computing the Lexical Diversity of Tweets
1.4.4 Examining Patterns in Retweets
1.4.5 Visualizing Frequency Data with Histograms
1.5 Closing Remarks
1.6 Recommended Exercises
1.7 Online Resources
2. Mining Facebook: Analyzing Fan Pages, Examining Friendships, and More
2.1 Overview
2.2 Exploring Facebook's Graph API
2.2.1 Understanding the Graph API
2.2.2 Understanding the Open Graph Protocol
2.3 Analyzing Social Graph Connections
2.3.1 Analyzing Facebook Pages
2.3.2 Manipulating Data Using pandas
2.4 Closing Remarks
2.5 Recommended Exercises
2.6 Online Resources
3. Mining Instagram: Computer Vision, Neural Networks, Object Recognition,and Face Detection
3.1 Overview
3.2 Exploring the Instagram API
3.2.1 Making Instagram API Requests
3.2.2 Retrieving Your Own Instagram Feed
3.2.3 Retrieving Media by Hashtag
3.3 Anatomy of an Instagram Post
3.4 Crash Course on Artificial Neural Networks
3.4.1 Training a Neural Network to \"Look\" at Pictures
3.4.2 Recognizing Handwritten Digits
3.4.3 Object Recognition Within Photos Using Pretrained Neural Networks
3.5 Applying Neural Networks to Instagram Posts
3.5.1 Tagging the Contents of an Image
3.5.2 Detecting Faces in Images
3.6 Closing Remarks
3.7 Recommended Exercises
3.8 Online Resources
4. Mining Linkeflln: Faceting Job Titles, Clustering Colleagues, and More
4.1 Overview
4.2 Exploring the LinkedIn API
4.2.1 Making LinkedIn API Requests
4.2.2 Downloading LinkedIn Connections as a CSV File
4.3 Crash Course on Clustering Data
4.3.1 Normalizing Data to Enable Analysis
4.3.2 Measuring Similarity
4.3.3 Clustering Algorithms
4.4 Closing Remarks /
4.5 Recommended Exercises
4.6 Online Resources
5. Mining Text Files: Computing Document Similarity, Extracting Collocations, and More.
5.1 Overview
5.2 Text Files
5.3 A Whiz-Bang Introduction to TF-IDF
5.3.1 Term Frequency
5.3.2 Inverse Document Frequency
5.3.3 TF-IDF
5.4 Querying Human Language Data with TF-IDF
5.4.1 Introducing the Natural Language Toolkit
5.4.2 Applying TF-IDF to Human Language
5.4.3 Finding Similar Documents
5.4.4 Analyzing Bigrams in Human Language
5.4.5 Reflections on Analyzing Human Language Data
5.5 Closing Remarks
5.6 Recommended Exercises
5.7 Online Resources
6. Mining Web Pages: Using Natural Language Processing to Understand Human Language, Summarize Blog Posts, and More
6.1 Overview
6.2 Scraping, Parsing, and Crawling the Web
6.2.1 Breadth-First Search in Web Crawling
6.3 Discovering Semantics by Decoding Syntax
6.3.1 Natural Language Processing Illustrated Step-by-Step
6.3.2 Sentence Detection in Human Language Data
6.3.3 Document Summarization
6.4 Entity-Centric Analysis: A Paradigm Shift
6.4.1 Gisting Human Language Data
6.5 Quality of Analytics for Processing Human Language Data
6.6 Closing Remarks
6.7 Recommended Exercises
6.8 Online Resources
7. Mining Mailboxes: Analyzing Who's Talking to Whom About What,How Often, and More
7.1 Overview
7.2 Obtaining and Processing a Mail
……
展開全部
商品評論(0條)
暫無評論……
書友推薦
編輯推薦
返回頂部
中圖網(wǎng)
在線客服