經(jīng)典原版書庫計算機(jī)體系結(jié)構(gòu):量化研究方法(英文版.原書第6版) 版權(quán)信息
- ISBN:9787111631101
- 條形碼:9787111631101 ; 978-7-111-63110-1
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
經(jīng)典原版書庫計算機(jī)體系結(jié)構(gòu):量化研究方法(英文版.原書第6版) 本書特色
圖靈獎得主經(jīng)典之作,在摩爾定律失效之日預(yù)言計算機(jī)體系結(jié)構(gòu)的重生!新版采用RISC-V,新增特定領(lǐng)域體系結(jié)構(gòu)
經(jīng)典原版書庫計算機(jī)體系結(jié)構(gòu):量化研究方法(英文版.原書第6版) 內(nèi)容簡介
在過去20多年的時間里,本書一直是計算機(jī)領(lǐng)域的教師、學(xué)生和體系結(jié)構(gòu)設(shè)計人員的推薦閱讀之作。兩位作者Hennessy和Patterson于2017年榮獲圖靈獎,肯定了他們對計算機(jī)領(lǐng)域持久而重要的技術(shù)貢獻(xiàn)。隨著處理器和系統(tǒng)架構(gòu)的*新發(fā)展,第6版進(jìn)行了全面修訂。這一版采用RISC-V指令集體系結(jié)構(gòu),這是一個現(xiàn)代的RISC指令集,被設(shè)計為免費且可公開采用的標(biāo)準(zhǔn)。書中還增加了一個關(guān)于領(lǐng)域特定體系結(jié)構(gòu)的新章節(jié),并更新了關(guān)于倉儲級計算的章節(jié),其中介紹了谷歌*新的WSC。與本書之前版本的目標(biāo)一樣,本書致力于揭開計算機(jī)體系結(jié)構(gòu)的神秘面紗,關(guān)注那些令人興奮的技術(shù)創(chuàng)新,同時強(qiáng)調(diào)良好的工程設(shè)計。
經(jīng)典原版書庫計算機(jī)體系結(jié)構(gòu):量化研究方法(英文版.原書第6版) 目錄
1.1 Introduction 2
1.2 Classes of Computers 6
1.3 Defining Computer Architecture 11
1.4 Trends in Technology 18
1.5 Trends in Power and Energy in Integrated Circuits 23
1.6 Trends in Cost 29
1.7 Dependability 36
1.8 Measuring, Reporting, and Summarizing Performance 39
1.9 Quantitative Principles of Computer Design 48
1.10 Putting It All Together: Performance, Price, and Power 55
1.11 Fallacies and Pitfalls 58
1.12 Concluding Remarks 64
1.13 Historical Perspectives and References 67
Case Studies and Exercises by Diana Franklin 67
Chapter 2 Memory Hierarchy Design
2.1 Introduction 78
2.2 Memory Technology and Optimizations 84
2.3 Ten Advanced Optimizations of Cache Performance 94
2.4 Virtual Memory and Virtual Machines 118
2.5 Cross-Cutting Issues: The Design of Memory Hierarchies 126
2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700 129
2.7 Fallacies and Pitfalls 142
2.8 Concluding Remarks: Looking Ahead 146
2.9 Historical Perspectives and References 148
Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li
Chapter 3 Instruction-Level Parallelism and Its Exploitation
3.1 Instruction-Level Parallelism: Concepts and Challenges 168
3.2 Basic Compiler Techniques for Exposing ILP 176
3.3 Reducing Branch Costs With Advanced Branch Prediction 182
3.4 Overcoming Data Hazards With Dynamic Scheduling 191
3.5 Dynamic Scheduling: Examples and the Algorithm 201
3.6 Hardware-Based Speculation 208
3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 218
3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 222
3.9 Advanced Techniques for Instruction Delivery and Speculation 228
3.10 Cross-Cutting Issues 240
3.11 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 242
3.12 Putting It All Together: The Intel Core i7 6700 and ARM Cortex-A53 247
3.13 Fallacies and Pitfalls 258
3.14 Concluding Remarks: What’s Ahead? 264
3.15 Historical Perspective and References 266
Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 266
Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
4.1 Introduction 282
4.2 Vector Architecture 283
4.3 SIMD Instruction Set Extensions for Multimedia 304
4.4 Graphics Processing Units 310
4.5 Detecting and Enhancing Loop-Level Parallelism 336
4.6 Cross-Cutting Issues 345
4.7 Putting It All Together: Embedded Versus Server GPUs and Tesla Versus Core i7 346
4.8 Fallacies and Pitfalls 353
4.9 Concluding Remarks 357
4.10 Historical Perspective and References 357
Case Study and Exercises by Jason D. Bakos 357
Chapter 5 Thread-Level Parallelism
5.1 Introduction 368
5.2 Centralized Shared-Memory Architectures 377
5.3 Performance of Symmetric Shared-Memory Multiprocessors 393
5.4 Distributed Shared-Memory and Directory-Based Coherence 404
5.5 Synchronization: The Basics 412
5.6 Models of Memory Consistency: An Introduction 417
5.7 Cross-Cutting Issues 422
5.8 Putting It All Together: Multicore Processors and Their Performance 426
5.9 Fallacies and Pitfalls 438
5.10 The Future of Multicore Scaling 442
5.11 Concluding Remarks 444
5.12 Historical Perspectives and References 445
Case Studies and Exercises by Amr Zaky and David A. Wood 446
Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism
6.1 Introduction 466
6.2 Programming Models and Workloads for Warehouse-Scale Computers 471
6.3 Computer Architecture of Warehouse-Scale Computers 477
6.4 The Efficiency and Cost of Warehouse-Scale Computers 482
6.5 Cloud Computing: The Return of Utility Computing 490
6.6 Cross-Cutting Issues 501
6.7 Putting It All Together: A Google Warehouse-Scale Computer 503
6.8 Fallacies and Pitfalls 514
6.9 Concluding Remarks 518
6.10 Historical Perspectives and References 519
Case Studies and Exercises by Par
經(jīng)典原版書庫計算機(jī)體系結(jié)構(gòu):量化研究方法(英文版.原書第6版) 作者簡介
約翰·L.亨尼斯(John L.Hennessy),Hennessy與Patterson共同榮獲了2017年度“圖靈獎”,以表彰他們在計算機(jī)體系結(jié)構(gòu)領(lǐng)域的開創(chuàng)性貢獻(xiàn)。Hennessy現(xiàn)為Google母公司Alphabet的董事長,之前曾任斯坦福大學(xué)第十任校長。他是IEEE和ACM會士,美國國家工程院、國家科學(xué)院、美國哲學(xué)院以及美國藝術(shù)與科學(xué)院院士。他于1981年開始研究MIPS項目,之后創(chuàng)辦MIPS Computer Systems公司,開發(fā)了商用RISC微處理器之一。他還領(lǐng)導(dǎo)了DASH項目,設(shè)計了一個可擴(kuò)展cache-致性多處理器原型。 戴維·A.帕特森(David A.Patterson),Patterson與Hennessy共同榮獲了2017年度“圖靈獎”。Patterson現(xiàn)為Google杰出工程師,之前為加州大學(xué)伯克利分校教授。他曾任ACM主席一職,目前是ACM和IEEE會士,美國藝術(shù)與科學(xué)院和計算機(jī)歷史博物館院士,并入選了美國國家工程院、國家科學(xué)院和硅谷工程名人堂。他領(lǐng)導(dǎo)了RISC I的設(shè)計與實現(xiàn)工作,并且是RAID項目的領(lǐng)導(dǎo)者。
- >
回憶愛瑪儂
- >
【精裝繪本】畫給孩子的中國神話
- >
月亮虎
- >
伊索寓言-世界文學(xué)名著典藏-全譯本
- >
龍榆生:詞曲概論/大家小書
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
人文閱讀與收藏·良友文學(xué)叢書:一天的工作
- >
史學(xué)評論