書馨卡幫你省薪 2024個(gè)人購書報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊
> >
構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版)

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版)

出版社:東南大學(xué)出版社出版時(shí)間:2020-08-01
開本: 16開 頁數(shù): 238
中 圖 價(jià):¥66.8(7.5折) 定價(jià)  ¥89.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書更多>

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 版權(quán)信息

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 本書特色

作者Emmanuel Ameisen是一名經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家,他領(lǐng)導(dǎo)著一個(gè)人工智能教育項(xiàng)目群,通過代碼片段、插圖和截圖以及對(duì)行業(yè)領(lǐng)袖的采訪內(nèi)容展示實(shí)用的機(jī)器學(xué)習(xí)概念。 本書**部分教授如何設(shè)計(jì)一個(gè)機(jī)器學(xué)習(xí)應(yīng)用程序并評(píng)估效果;第二部分介紹如何構(gòu)建一個(gè)可用的機(jī)器學(xué)習(xí)模型;第三部分演示改進(jìn)模型的方法,讓模型滿足你*初的設(shè)想;第四部分介紹應(yīng)用部署和監(jiān)測策略。 這本書將幫助你: 定義產(chǎn)品目標(biāo),確立一個(gè)機(jī)器學(xué)習(xí)問題 快速構(gòu)建一個(gè)端到端的機(jī)器學(xué)習(xí)流水線并獲取一個(gè)初始數(shù)據(jù)集 培訓(xùn)和評(píng)估機(jī)器學(xué)習(xí)模型并解決性能瓶頸 在生產(chǎn)環(huán)境中部署和監(jiān)測模型

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 內(nèi)容簡介

學(xué)習(xí)設(shè)計(jì)、構(gòu)建和部署機(jī)器學(xué)習(xí)(ML)應(yīng)用所需的技能。通過這本實(shí)用的教程,你將構(gòu)建一個(gè)機(jī)器學(xué)習(xí)驅(qū)動(dòng)的示例應(yīng)用程序,將很初的想法轉(zhuǎn)化成可部署的產(chǎn)品。數(shù)據(jù)科學(xué)家、軟件工程師和產(chǎn)品經(jīng)理一一無論經(jīng)驗(yàn)豐富的的專家還是剛剛?cè)腴T的新手一一都可以循序漸進(jìn)地學(xué)習(xí)構(gòu)建實(shí)際的機(jī)器學(xué)習(xí)應(yīng)用程序所涉及的工具、很好實(shí)踐和技術(shù)挑戰(zhàn)。 作者Emmanuel Ameisen是一名經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家,他領(lǐng)導(dǎo)著一個(gè)人工智能教育項(xiàng)目群,通過代碼片段、插圖和屏幕截圖以及對(duì)行業(yè)的采訪內(nèi)容展示實(shí)用的機(jī)器學(xué)習(xí)概念。本書部分教授如何設(shè)計(jì)一個(gè)機(jī)器學(xué)習(xí)應(yīng)用程序并評(píng)估效果;第二部分介紹如何構(gòu)建一個(gè)可用的機(jī)器學(xué)習(xí)模型;第三部分演示改進(jìn)模型的方法,讓模型滿足你很初的設(shè)想;第四部分介紹應(yīng)用部署和監(jiān)測策略。 這本書將幫助你: 定義產(chǎn)品目標(biāo),確立一個(gè)機(jī)器學(xué)習(xí)問題; 快速構(gòu)建一個(gè)端到端機(jī)器學(xué)習(xí)流水線并獲取一個(gè)初始數(shù)據(jù)集; 培訓(xùn)和評(píng)估機(jī)器學(xué)習(xí)模型并解決性能瓶頸; 在生產(chǎn)環(huán)境中部署和監(jiān)測模型。

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 目錄

Preface

Part I. Find the Correct ML Approach

1. From Product Goal to ML Framing

Estimate What Is sible

Models

Data

Framing the ML Editor

Trying to Do It All with ML: An End-to-End Framework

The Simplest Approach: Being the Algorithm

Middle Ground: Learning from Our Experience

Monica Rogati: How to Choose and Prioritize ML Projects

Conclusion

2. Createa Plan

Measuring Success

Business Performance

Model Performance

Freshness and Distribution Shift

Speed

Estimate Scope and Challenges

Leverage Domain Expertise

Stand on the Shoulders of Giants

ML Editor Planning

Initial Plan for an Editor

Always Start with a Simple Model

To Make Regular Progress: Start Simple

Start with a Simple Pipeline

Pipeline for the ML Editor

Conclusion

Part II. Build a Working Pipeline

3. Build Your First End-to-End Pipeline

The Simplest Scaffolding

Prototype of an ML Editor

Parse and Clean Data

Tokenizing Text

Generating Features

Test Your Workflow

User Experience

Modeling Results

ML Editor Prototype Evaluation

Model

User Experience

Conclusion

4. Acquire an Initial Dataset

Iterate on Datasets

Do Data Science

Explore Your First Dataset

Be Efficient, Start Small

Insights Versus Products

A Data Quality Rubric

Label to Find Data Trends

Summary Statistics

Explore and Label Efficiently

Be the Algorithm

Data Trends

Let Data Inform Features and Models

Build Features Out of Patterns

ML Editor Features

Robert nro: How Do You Find, Label, and Leverage Data?

Conclusion

Part III. Iterate on Models

5. Train and Evaluate Your Model

The Simplest Appropriate Model

Simple Models

From Patterns to Models

Split Your Dataset

ML Editor Data Split

Judge Performance

Evaluate Your Model: Look Beyond Accuracy

Contrast Data and Predictions

Confusion Matrix

ROC Curve

Calibration Curve

Dimensionality Reduction for Errors

The Top-k Method

Other Models

Evaluate Feature Importancek

Directly from a Classifier

Black-Box Explainers

Conclusion

6. Debug Your ML Problems

Software Best Practices

ML-Specific Best Practices

Debug Wiring: Visualizing and Testing

Start with One Example

Test Your ML Code

Debug Training: Make Your Model Learn

Task Difficulty

Optimization Problems

Debug Generalization: Make Your Model Useful

Data Leakage

Overfitting

Consider the Task at Hand

Conclusion

7. Using Classifiers for Writing Recommendations

Extracting Recommendations from Models

What Can We Achieve Without a Model?

Extracting Global Feature Importance

Using a Model's Score

Extracting Local Feature Importance

Comparing Models

Version 1: The Report Card

Version 2: More Powerful, More Unclear

Version 3: Understandable Recommendations

Generating Editing Recommendations

Conclusion

Part IV. Deploy and Monitor

8. Considerations When Deploying Models

Data Concerns

Data Ownership

Data Bias

Systemic Bias

Modeling Concerns

Feedback Loops

Inclusive Model Performance

Considering Context

Adversaries

Abuse Concerns and Dual-Use

Chris Harland: Shipping Experiments

Conclusion

9. Choose Your Deployment Option

Server-Side Deployment

Streaming Application or API

Batch Predictions

Client-Side Deployment

On Device

Browser Side

Federated Learning: A Hybrid Approach

Conclusion

10. Build Safeguards for Models

Engineer Around Failures

Input and Output Checks

Model Failure Fal


展開全部

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 節(jié)選

“很多關(guān)于機(jī)器學(xué)習(xí)的書都跳過了*困難的部分:提煉問題、調(diào)試模型和為客戶部署。但本書關(guān)注的正式這些內(nèi)容,可以讓你的項(xiàng)目從一個(gè)想法變成具有影響力的產(chǎn)品! ——Alexander Gude (Intuit公司的數(shù)據(jù)科學(xué)家)

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)(英文版) 作者簡介

Emmanuel Ameisen是Stripe公司的機(jī)器學(xué)習(xí)工程師,曾經(jīng)為Local Motion和Zipcar公司實(shí)施并部署了預(yù)測分析和機(jī)器學(xué)習(xí)解決方案。最近,他正在領(lǐng)導(dǎo)洞見數(shù)據(jù)科學(xué)的人工智能項(xiàng)目群,指導(dǎo)著100多個(gè)機(jī)器學(xué)習(xí)項(xiàng)目。他擁有法國三所大學(xué)的人工智能、計(jì)算機(jī)工程和管理碩士學(xué)位。

商品評(píng)論(0條)
暫無評(píng)論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服