書馨卡幫你省薪 2024個(gè)人購(gòu)書報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版)

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版)

出版社:科學(xué)出版社出版時(shí)間:2022-10-01
開本: B5 頁(yè)數(shù): 952
中 圖 價(jià):¥394.2(7.9折) 定價(jià)  ¥499.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書更多>

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版) 版權(quán)信息

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版) 本書特色

國(guó)家航發(fā)系統(tǒng)的所有企事業(yè)單位一線的科研人員和管理人員,高等學(xué)校力學(xué)學(xué)科固體力學(xué)學(xué)科、材料學(xué)科的教師和博士生、碩士生,個(gè)別高年級(jí)的本科生。

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版) 內(nèi)容簡(jiǎn)介

本書內(nèi)容是開始基于航空發(fā)動(dòng)機(jī)熱障涂層剝落瓶頸亟待解決的重大需求,從工程中提煉科學(xué)問題,致力于特別環(huán)境下涂層性能損傷表征、熱-力-化耦合模型及環(huán)境模擬裝置等物理力學(xué)應(yīng)用基礎(chǔ)研究,并將研究成果應(yīng)用到工程解決實(shí)際問題。提出的界面斷裂韌性屈曲表征與高溫裂紋聲發(fā)射實(shí)時(shí)檢測(cè)方法,解決了界面性能不能科學(xué)表征、失效模式與過(guò)程接近未知的黑匣子問題;建立的熱-力-化耦合氧化與CMAS腐蝕本構(gòu)模型,打破了長(zhǎng)期以來(lái)基于失效現(xiàn)象的定性分析模式;自主研制的CMAS高溫接觸角、高溫振動(dòng)、航空煤油式燃?xì)鉀_擊與實(shí)時(shí)測(cè)試、高速旋轉(zhuǎn)與實(shí)時(shí)測(cè)試等裝置,極大程度上解決了試車前接近沒有考核設(shè)備的問題。

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版) 目錄

目錄
Contents
1 Introduction 1
1.1 TBCs and the Corresponding Preparation Methods 2
1.1.1 TBC Materialsand Structures 2
1.1.2 TBC Preparation Methods 4
1.2 TBC Spallation Failure and Its MainIn.uencingFactors 9
1.2.1 Service Conditions for TBCs 9
1.2.2 TBC Spallation Failure and Its MainIn.uencing Factors 10
1.3 Solid Mechanics Requirements and Challenges Generated by TBC Failure 14
1.3.1 Solid Mechanics Requirements Generated by TBC Failure 14
1.3.2 Solid Mechanics Challenges Presented by TBC Failure 17
1.4 Content Overview 21
References 23
2 Basic Theoretical Frameworks for Thermo–Mechano-Chemical Coupling in TBCs 27
2.1 Continuum Mechanics 27
2.2 Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling Basedon Small Deformation 30
2.2.1 Strain and Stress Measures BasedonSmall Deformation[5,6] 30
2.2.2 Stress–Strain Constitutive Relations Based onSmall Deformation[5,6] 47
2.2.3 Constitutive Theoryfor Thermomechanical CouplingBased on Small Deformation[11] 52
2.2.4 Constitutive Theory forThermo–Mechano-Chemical Coupling Basedon Small Deformation[16] 61
2.3 Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling BasedonLarge Deformation 68
2.3.1 Kinematic Description[9] 68
2.3.2 Stressand StrainMeasures 71
2.3.3 Mass Conservation and Force Equilibrium Equations 74
2.3.4 Constitutive Theoryfor Thermomechanical Coupling Basedon Large Deformation[18,25,26] 80
2.3.5 Constitutive Theory for Thermo–Mechano-Chemical Coupling BasedonLarge Deformation 85
2.4 Summary and Out look 93
References 97
3 Nonlinear FEA of TBCs on Turbine Blades 99
3.1 FEAPrinciples 100
3.1.1 Functional Variational Principle 100
3.1.2 WeakFormof theEulerianFormulation 105
3.1.3 FEDiscretizati on of the Eulerian Formulation 108
3.1.4 WeakFormof theLagrangian Formulation 111
3.1.5 FE Discretizati on of the Lagrangian Formulation 113
3.1.6 WeakFormof the Arbitrary Lagrangian–Eulerian Formulation 116
3.1.7 Initial and Boundary Conditions 121
3.2 FE Modeling of TBCs on Turbine Blades 122
3.2.1 Geometric Characteristicsof Turbine Blades 122
3.2.2 Parametric Modelingof Turbine Blades 124
3.3 Mesh Generationfor Turbine Blades 140
3.3.1 Generationof Unstructured Meshes 141
3.3.2 Structured Meshes for Turbine Blades 145
3.4 Image-Based FE Modeling 150
3.4.1 Image-BasedFEM 151
3.4.2 2D TGO Interface Modeling 153
3.4.3 Porous Ceramic Layer Modeling 156
3.4.4 D3TGO Interface Modeling Method 157
3.5 Summaryand Outlook 158
References 159
4 Geometric Nonlinearity Theory for the Interfacial Oxidation of TBCs 163
4.1 Interfacial Oxidation Phenomenon andFailure 164
4.1.1 Characteristics and Patterns of Interfacial Oxidation 164
4.1.2 StressField Inducedby Interfacial Oxidation 167
4.1.3 Coating SpallationInducedby Interfacial Oxidation 170
4.2 TGO Growth Model Basedon Diffusion Reaction 172
4.2.1 Governing Equations 172
4.2.2 FESimulation 178
4.3 Thermo–Chemo–Mechanical CouplingAnalytical Model forInterfacial OxidationofTBCs 188
4.3.1 Thermo–Chemo–Mechanical Coupling Analytical Growth Model forInterfacial Oxidation 188
4.3.2 Thermo–Chemo–Mechanical Coupling Growth Constitutive Relations forInterfacial Oxidation 201
4.3.3 Analysis of theThermo–Mechano-Chemical CouplingGrowthPatterns and Mechanisms DuringInterfacialOxidation 222 References 232
5 Physically Nonlinear Coupling Growth and Damage Caused by Interfacial Oxidation in TBCs 235
5.1 Physically Nonlinear Model forThermo–Mechano–Chemical Coupling Growth Causedby Interfacial Oxidationin TBCs 236
5.1.1 Model Framework 236
5.1.2 Numerical Implementation 243
5.1.3 Resultsand Discussion 246
5.1.4 Analytical Coupling Model for Interfacial Oxidation 252
5.1.5 Comparison with Experimental Results 256
5.2 Interfacial Oxidation Failure Theorythat Integrates the CZM and PFM 262
5.2.1 Integrated CZM and PFM Framework 262
5.2.2 Introductionto PFM 263
5.2.3 Introductionto CZM for Phase-FieldCrack Interactions 267
5.2.4 Numerical Implementation 271
5.2.5 Resultsand Discussion 273
5.3 Summary and Out look 281
5.3.1 Summary 281
5.3.2 Outlook 283
References 283
6 Thermo–Mechano–Chemical Coupling During CMAS Corrosion in TBCs 287
6.1 Correlation Analysisof Molten CMASIn.ltration and Its KeyIn.uencingFactors 288
6.1.1 Theoretical Model for Mol ten CMASIn.ltration Depthin EB-PVD TBCs 288
6.1.2 Experimentsonthe MoltenCMASIn.ltration Depthinan EB-PVD TBC and Its In.uencing Factors 298
6.1.3 CMASIn.ltration Depthinthe EB-PVD TBC and ItsIn.uencing Factors 299
6.1.4 In.ltration of CMAS Meltsin an APS TBC 308
6.2 Microstructural Evolution, Deformation, and Composition Loss of Coatings Dueto Corrosion 312
6.2.1 Microstructural Evolution and Deformation ofCoatings 312
6.2.2 Thermo–Mechano–Che
展開全部

熱障涂層破壞理論與評(píng)價(jià)技術(shù)(英文版) 節(jié)選

Chapter 1 Introduction   The aeroengine is the “heart” of an aircraft, and these national treasures are an important indicators of national core competitiveness. The turbine inlet tempera-tures in both third-and fourth-generation aeroengines exceed the melting points of high-temperature metallic materials.A new generationof materials can yielda new generation of equipment. As the most feasible technology for improving the service temperature of gas turbine engines, thermal barrier coatings (TBCs) have becomeanindispensablethermalprotection materialfor hot-end components(e.g., high-pressure turbinebladesin aeroenginesandgasturbines)and,toaremarkable extent, determine engine performance anddevelopmentlevels. All theworld’savia-tionpowershave listedTBCsasakey coretechnologyin theirmajoradvancement plans.Likewise, China has categorized TBCs asakeytechnology urgently needed for aeroengines andgasturbines.   Operating in hot-end components such as engine turbine blades, TBCs are subjected to long-termextreme conditions such as impactsfrom 2000Kgas near the critical Mach number, centrifugal forces generated by rotations at 10,000– 50,000 rpm,fatigue, creep, calcium-magnesium-aluminosilicate(CMAS) corrosion, solid particle erosion,and oxidation, accompaniedbychemical reactions.Asaresult ofextremeadverse conditions, coatingsspallandfailbyavarietyofcomplexmech-anisms, posinga multitudeofnew challengesto research onfailure theories.For example, oxidation, thermal mismatch, growth stress, and high temperature, which are involved in the interfacial oxidation failure of TBCs, affect one another. The oxidation process and the resulting coating spallation are both a typical thermo-mechano-chemical couplingphysical nonlinear problem anda geometric nonlinear problemwithstrainupto10%.As anotherexample,TBCmelts(CMAS) corrodeat high temperatures, and theirrelevant in.ltration and performanceevolution patterns and thermo-mechano-chemical coupling mechanismsare allnewfailure phenomena exhibitedbyTBCs,the mechanical natureofwhich has been poorlyexplained sofar.   Turbine blades are geometrically complex, and TBCs with defects and multi-layer systemshaveacomplexmicrostructure. During service, coatings and interfaces evolve in terms of composition, microstructure, and performance. Their nonlinear physical and geometricpropertiescreatenew problemsfor mechanical performance characterization and numerical simulation techniques. In addition, high tempera-turesare inevitableservice conditions for TBCs.The characterizationofthe coating performance at high temperatures and the accurate descriptionofthe loading condi-tions in complex high-temperature environments are issues to be considered in the failure analysis of TBCs.   Performanceevaluationand service lifepredictionarethemosturgent issuesof the TBC applicationsector.The associationofthe service lifewith thematerial and service-environment parametersoffersthe most direct basis forthe TBC production sector.Understanding this associationisthe ultimategoalofinvestigationintofailure mechanisms and, more importantly, is the most dif.cult scienti.c problem at the forefrontof theresearchin this .eld. Moreover, simulation andevaluationdevices canofferthe most reliable, directexperimental basis.They are thetopical andkey areasof researchonTBCfailure mechanism analysisandevaluationtechniques,but technological embargos are often imposed by relevant countries.   Thus,spallationfailure theories, numerical computational methods, mechanical performance characterizations, performance and service life evaluations, and pre-test-run simulation and evaluation devices all merit investigation in the study of TBCfailure mechanisms and performanceevaluation.   1.1 TBCs and the Corresponding Preparation Methods   1.1.1 TBC Materials and Structures   To meetthe demandforincreasingservice temperaturesingasturbine engines,the National Aeronautics and Space Administration(NASA)of the UnitedStates put forwardthe conceptof TBCsin 1953 [1–3]. TBCsofferthermalprotection based on thefollowing principle. Ceramicmaterials are characterizedby high-temperature resistance, high thermalstability,lowthermal conductivity,and high corrosion resis-tance. Because of these properties, ceramic materials are combined with metallic substrates in the form of coatings to insulate high-temperature metallic substrate materialsfromhigh-temperaturegas,withthegoalof reducingsurface temperatures in hot-end metallic components and simultaneously enhancing their resistance to high-temperature oxidation and hot corrosion [4,5]. TBCs have been satisfactorily appliedinhot-end componentssuch as turbine blades in aeroengines and gas turbines.   A typical TBC has a two-layer structure [8]. Figure 1.1 shows the geometry an structureof a TBC onaturbine blade. Theblade substrateis generally madeofa Ni-based high-temperaturealloy(adirectionally solidi.ed alloy ora single-crystal alloy).The TBC containsa metallic bond c

商品評(píng)論(0條)
暫無(wú)評(píng)論……
書友推薦
本類暢銷
返回頂部
中圖網(wǎng)
在線客服