有劃線(xiàn)標(biāo)記、光盤(pán)等附件不全詳細(xì)品相說(shuō)明>>
-
>
宇宙、量子和人類(lèi)心靈
-
>
考研數(shù)學(xué)專(zhuān)題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡(jiǎn)史
-
>
浪漫地理學(xué):追尋崇高景觀
抽象代數(shù)講義-第1卷 版權(quán)信息
- ISBN:9787510061516
- 條形碼:9787510061516 ; 978-7-5100-6151-6
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類(lèi):>>
抽象代數(shù)講義-第1卷 本書(shū)特色
《抽象代數(shù)講義》是一套久負(fù)盛名的三卷集教材,是作者雅格布斯根據(jù)他在霍普金斯大學(xué)和耶魯大學(xué)講課時(shí)的講義編寫(xiě)而成的,后又成為作者《基本代數(shù)學(xué)》一書(shū)的藍(lán)本!冻橄蟠鷶(shù)講義(第1卷)》介紹了群、環(huán)、域、同構(gòu)等抽象代數(shù)的重要的基本概念和抽象代數(shù)的基本性質(zhì)。
抽象代數(shù)講義-第1卷 內(nèi)容簡(jiǎn)介
The present volume is the first of three that will be published under the general title Lectures in Abstract Algebra. These vol- umes are based on lectures which the author has gi,ren during the past ten years at the University of North Carolina, at The Johns Hopkins University, and at Yale University. The general plan of the work is as follows: The present first volume gives an introduction to abstract algebra and gives an account of most of the important algebraic concepts. In a treatment of this type it is impossible to give a comprehensive account of the topics which are introduced. Nevertheless we have tried to go beyond the foundations and elementary properties of the algebraic sys- tems. This has necessitated a certain amount of selection and omission. We feel that even at the present stage a deeper under- standing of a few topics is to be preferred to a superficial under- standing of many.
抽象代數(shù)講義-第1卷 目錄
SECTION
1. Operationsonsets
2. Product sets, mappings
3. Equivalencerelations
4. Thenaturalnumbers
5. Thesystemofintegers
6. The division process in I
CHAPTER I: SEMI-GROUPS AND GROUPS
1. Definition and examples ofsemi-groups
2. Non-associative binary compositions
3. Generalized associativelaw. Powers
4. Commutativity
5. Identities andinverses INTRODUCTION: CONCEPTS FROM SET THEORY THE SYSTEM OF NATURAL NUMBERS
SECTION
1. Operationsonsets
2. Product sets, mappings
3. Equivalencerelations
4. Thenaturalnumbers
5. Thesystemofintegers
6. The division process in I
CHAPTER I: SEMI-GROUPS AND GROUPS
1. Definition and examples ofsemi-groups
2. Non-associative binary compositions
3. Generalized associativelaw. Powers
4. Commutativity
5. Identities andinverses
6. Definition and examples of groups
7. Subgroups
8. Isomorphism
9. Transformation groups
10. Realization of a group as a transformation group
II. Cyclic groups. Order of an element
12. Elementary properties ofpermutations
13. Coset decompositions ofa group
14. Invariant subgroups and factor groups
15. Homomorphismofgroups
16. The fundamental theorem of homomorphism for groups
17. Endomorphisms, automorphisms, center of a group
18. Conjugatc classes
CHAPTER II: RINGS, INTEGRAL DOMAINS AND FIELDS
SECTION
1. Definition andexamples
2. Typesofrings
3. Quasi-regularity. The circle composition
4. Matrixrings
5. Quaternions
6. Subrings generated by a set of elements. Center
7. Ideals, difference rings
8. Ideals and difference rings for the ring of integers
9. Homomorphism ofrings
10. Anti-isomorphism
11. Structure of the additive group of a ring. The charateristic ofaring
12. Algebra of subgroups of the additive group of a ring. Onr sidedideals
13. The ring of endomorphisms of a commutative group
14. The multiplications of a ring
CHAPTER III: EXTENSIONS OF RINGS AND FIELDS
1. Imbedding of a ring in a ring with an identity
2. Field of fractions of a commutative integral domain
3. Uniqueness of the field of fractions
4. Polynomialrings
5. Structure of polynomial rings
6. Properties of the ring 2l[x]
7. Simple extensions ofa field
8. Structureofany field
9. The number of roots of a'polynomial in a field
10. Polynomials in several elements
11. Symmetric polynomials
12. Ringsoffunctions
CHAPTER IV: ELEMENTARY FACTORIZATlON THEORY
1. Factors, associates, irreducible elements
2. Gaussian semi-groups
3. Greatest common divisors
4. Principalidealdomains
……
CHAPTER V: GROUPS WITH OPERATORS
CHAPTER VI: MODULES AND IDEALS
CHAPTER VII: LATTICES
Index
抽象代數(shù)講義-第1卷 節(jié)選
《抽象代數(shù)講義》是一套久負(fù)盛名的三卷集教材,是作者雅格布斯根據(jù)他在霍普金斯大學(xué)和耶魯大學(xué)講課時(shí)的講義編寫(xiě)而成的,后又成為作者《基本代數(shù)學(xué)》一書(shū)的藍(lán)本!冻橄蟠鷶(shù)講義(第1卷)》介紹了群、環(huán)、域、同構(gòu)等抽象代數(shù)的重要的基本概念和抽象代數(shù)的基本性質(zhì)。
- >
【精裝繪本】畫(huà)給孩子的中國(guó)神話(huà)
- >
二體千字文
- >
名家?guī)阕x魯迅:朝花夕拾
- >
姑媽的寶刀
- >
李白與唐代文化
- >
唐代進(jìn)士錄
- >
自卑與超越
- >
史學(xué)評(píng)論