-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學(xué):追尋崇高景觀
力學(xué)-第5版 版權(quán)信息
- ISBN:9787510077784
- 條形碼:9787510077784 ; 978-7-5100-7778-4
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
力學(xué)-第5版 本書特色
謝克所著《力學(xué)(第5版)(英文版)》內(nèi)容全 面詳盡,幾乎包括了所有的從基本牛頓力學(xué)、經(jīng)典和 剛體力學(xué)到相對論力學(xué)和非線性動力學(xué)的所有知識點(diǎn) 。書中特別強(qiáng)調(diào)了對稱性、不變原理、幾何結(jié)構(gòu)和連 續(xù)力學(xué)。通過學(xué)習(xí)本書讀者可以更多的了解從運(yùn)動方 程產(chǎn)生的一般原理到理解對稱作為量子力學(xué)基礎(chǔ)的重 要性,并且了解所有物理分支必需的理論工具和概念 。本書的每章末都附加了一些練習(xí)實(shí)例,書的*后有 大量的練習(xí)和解答,這些都可以加深讀者對書中內(nèi)容 的理解。
力學(xué)-第5版 內(nèi)容簡介
《力學(xué)(第5版)(英文)》將力學(xué)作為理論物理學(xué)的一部分來介紹,首先從廣義坐標(biāo)和*小作用量原理導(dǎo)出拉格朗日方程,以后分別論述守恒定律、運(yùn)動方程的積分、質(zhì)點(diǎn)碰撞理論、微振動和剛體運(yùn)動理論,*后詳細(xì)論述了哈密頓方程和正則變換等相關(guān)課題。全書以簡潔的敘述給出了解決力學(xué)問題的*完全和*直接的方法。
力學(xué)-第5版 目錄
1.elementary newtonian mechanics 1.1 newton's laws (1687) and their interpretation 1.2 uniform rectilinear motion and inertial systems 1.3 inertial frames in relative motion 1.4 momentum and force 1.5 typical forces. a remark about units 1.6 space, time, and forces 1.7 the two-body system with internal forces 1.7.1 center-of-mass and relative motion 1.7.2 example: the gravitational force between two celestial bodies (kepler's problem) 1.7.3 center-of-mass and relative momentum in the two-body system 1.8 systems of finitely many particles 1.9 the principle of center-of-mass motion 1.10 the principle of angular-momentum conservation 1.11 the principle of energy conservation 1.12 the closed n-particle system 1.13 galilei transformations 1.14 space and time with galilei invariance 1.15 conservative force fields 1.16 one-dimensional motion of a point particle 1.17 examples of motion in one dimension 1.17.1 the harmonic oscillator 1.17.2 the planar mathematical pendulum 1.18 phase space for the n-particle system (in r3) 1.19 existence and uniqueness of the solutions of x_" = ~(_x, t) 1.20 physical consequences of the existence and uniqueness theorem 1.21 linear systems 1.21.1 linear, homogeneous systems 1.21.2 linear, inhomogeneous systems 1.22 integrating one-dimensional equations of motion 1.23 example: the planar pendulum for arbitrary deviations from the vertical 1.24 example: the two-body system with a central force 1.25 rotating reference systems: coriolis and centrifugal forces 1.26 examples of rotating reference systems 1.27 scattering of two particles that interact via a central force: kinematics 1.28 two-particle scattering with a central force: dynamics 1.29 example: coulomb scattering of two particles with equal mass and charge 1.30 mechanical bodies of finite extension 1.31 time averages and the virial theorem appendix: practical examples2. the principles of canonical mechanics 2.1 constraints and generalized coordinates 2.1.1 definition of constraints 2.1.2 generalized coordinates 2.2 d'alembert's principle 2.2.1 definition of virtual displacements 2.2.2 the static case 2.2.3 the dynamical case 2.3 lagrange's equations 2.4 examples of the use of lagrange's equations 2.5 a digression on variational principles 2.6 hamilton's variational principle (1834) 2.7 the euler-lagrange equations 2.8 further examples of the use of lagrange's equations 2.9 a remark about nonuniqueness of the lagrangian function 2.10 gauge transformations of the lagrangian function 2.11 admissible transformations of the generalized coordinates 2.12 the hamiltonian function and its relation to the lagrangian function l 2.13 the legendre transformation for the case of one variable 2.14 the legendre transformation for the case of several variables 2.15 canonical systems 2.16 examples of canonical systems 2.17 the variational principle applied to the hamiltonian function 2.18 symmetries and conservation laws 2.19 noether's theorem 2.20 the generator for infinitesimal rotations about an axis 2.21 more about the rotation group 2.22 infinitesimal rotations and their generators 2.23 canonical transformations 2.24 examples of canonical transformations 2.25 the structure of the canonical equations 2.26 example: linear autonomous systems in one dimension 2.27 canonical transformations in compact notation 2.28 on the symplectic structure of phase space 2.29 liouville's theorem 2.29.1 the local form 2.29.2 the global form 2.30 examples for the use of liouville's theorem 2.31 poisson brackets 2.32 properties of poisson brackets 2.33 infinitesimal canonical transformations 2.34 integrals of the motion 2.35 the hamilton-jacobi differential equation 2.36 examples for the use of the hamilton-jacobi equation 2.37 the hamilton-jacobi equation and integrable systems 2.37.1 local rectification of hamiltonian systems 2.37.2 integrable systems 2.37.3 angle and action variables 2.38 perturbing quasiperiodic hamiltonian systems 2.39 autonomous, nondegenerate hamiltonian systems in the neighborhood of integrable systems 2.40 examples. the averaging principle 2.40.1 the anharmonic oscillator 2.40.2 averaging of perturbations 2.41 generalized theorem of noether appendix: practical examples3. the mechanics of rigid bodies 3.1 definition of rigid body 3.2 infinitesimal displacement of a rigid body 3.3 kinetic energy and the inertia tensor 3.4 properties of the inertia tensor 3.5 steiner's theorem 3.6 examples of the use of steiner's theorem 3.7 angular momentum of a rigid body 3.8 force-free motion of rigid bodies 3.9 another parametrization of rotations: the euler angles 3.10 definition of eulerian angles 3.11 equations of motion of rigid bodies 3.12 euler's equations of motion 3.13 euler's equations applied to a force-free top 3.14 the motion of a free top and geometric constructions 3.15 the rigid body in the framework of canonical mechanics 3.16 example: the symmetric children's top in a gravitational field 3.17 more about the spinning top 3.18 spherical top with friction: the 'tippe top". 3.18.1 conservation law and energy considerations 3.18.2 equations of motion and solutions with constant energy appendix: practical examples4. relativistic mechanics 4.1 failures of nonrelativistic mechanics 4.2 constancy of the speed of light 4.3 the lorentz transformations 4.4 analysis of lorentz and poincar6 transformations 4.4.1 rotations and special lorentz tranformations ("boosts") 4.4.2 interpretation of special lorentz transformations 4.5 decomposition of lorentz transformations into their components 4.5.1 proposition on orthochronous, proper lorentz transformations 4.5.2 corollary of the decomposition theorem and some consequences 4.6 addition of relativistic velocities 4.7 galilean and lorentzian space-time manifolds 4.8 orbital curves and proper time 4.9 relativistic dynamics 4.9.1 newton's equation 4.9.2 the energy-momentum vector 4.9.3 the lorentz force 4.10 time dilatation and scale contraction 4.11 more about the motion of free particles 4.12 the conformal group5. geometric aspects of mechanics 5.1 manifolds of generalized coordinates 5.2 differentiable manifolds 5.2.1 the euclidean space rn 5.2.2 smooth or differentiable manifolds 5.2.3 examples of smooth manifolds 5.3 geometrical objects on manifolds 5.3.1 functions and curves on manifolds 5.3.2 tangent vectors on a smooth manifold 5.3.3 the tangent bundle of a manifold 5.3.4 vector fields on smooth manifolds 5.3.5 exterior forms 5.4 calculus on manifolds 5.4.1 differentiable mappings of manifolds 5.4.2 integral curves of vector fields 5.4.3 exterior product of one-forms 5.4.4 the exterior derivative 5.4.5 exterior derivative and vectors in r3 5.5 hamilton-jacobi and lagrangian mechanics 5.5.1 coordinate manifold q, velocity space tq, and phase space t*q 5.5.2 the canonical one-form on phase space 5.5.3 the canonical, symplectic two-form on m 5.5.4 symplectic two-form and darboux's theorem 5.5.5 the canonical equations 5.5.6 the poisson bracket 5.5.7 time-dependent hamiltonian systems 5.6 lagrangian mechanics and lagrange equations 5.6.1 the relation between the two formulations of mechanics 5.6.2 the lagrangian two-form 5.6.3 energy function on tq and lagrangian vector field 5.6.4 vector fields on velocity space tq and lagrange equations 5.6.5 the legendre transformation and the correspondence of lagrangian and hamiltonian functions 5.7 riemannian manifolds in mechanics 5.7.1 affine connection and parallel transport 5.7.2 parallel vector fields and geodesics 5.7.3 geodesics as solutions of euler-lagrange equations 5.7.4 example: force-free asymmetric top6. stability and chaos 6.1 qualitative dynamics 6.2 vector fields as dynamical systems 6.2.1 some definitions of vector fields and their integral curves 6.2.2 equilibrium positions and linearization of vector fields 6.2.3 stability of equilibrium positions 6.2.4 critical points of hamiltonian vector fields 6.2.5 stability and instability of the free top 6.3 long-term behavior of dynamical flows and dependence on external parameters 6.3.1 flows in phase space 6.3.2 more general criteria for stability 6.3.3 attractors 6.3.4 the poincar6 mapping 6.3.5 bifurcations of flows at critical points 6.3.6 bifurcations of periodic orbits 6.4 deterministic chaos 6.4.1 iterative mappings in one dimension 6.4.2 qualitative definitions of deterministic chaos 6.4.3 an example: the logistic equation 6.5 quantitative measures of deterministic chaos 6.5.1 routes to chaos 6.5.2 liapunov characteristic exponents 6.5.3 strange attractors 6.6 chaotic motions in celestial mechanics 6.6.1 rotational dynamics of planetary satellites 6.6.2 orbital dynamics of asteroids with chaotic behavior7. continuous systems 7.1 discrete and continuous systems 7.2 transition to the continuous system 7.3 hamilton's variational principle for continuous systems 7.4 canonically conjugate momentum and hamiltonian density. 7.5 example: the pendulum chain 7.6 comments and outlookexercises chapter 1: elementary newtonian mechanics chapter 2: the principles of canonical mechanics chapter 3: the mechanics of rigid bodies chapter 4: relativistic mechanics chapter 5: geometric aspects of mechanics chapter 6: stability and chaossolution of exercises chapter i: elementary newtonian mechanics chapter 2: the principles of canonical mechanics chapter 3: the mechanics of rigid bodies chapter 4: relativistic mechanics chapter 5: geometric aspects of mechanics chapter 6: stability and chaosappendix a. some mathematical notions b. historical notesbibliographyindex
力學(xué)-第5版 作者簡介
Florian Scheck 是國際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
自卑與超越
- >
莉莉和章魚
- >
人文閱讀與收藏·良友文學(xué)叢書:一天的工作
- >
煙與鏡
- >
二體千字文
- >
月亮與六便士
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
回憶愛瑪儂