-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學(xué):追尋崇高景觀
連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型-第2版 版權(quán)信息
- ISBN:9787510084454
- 條形碼:9787510084454 ; 978-7-5100-8445-4
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型-第2版 本書特色
本書是一部教科書,書中主要介紹連續(xù)介質(zhì)中的數(shù)學(xué)模型,包括連續(xù)介質(zhì)的一些基本概念、術(shù)語和定理,以及流體力學(xué)、固體力學(xué)中常用的一些模型;同時(shí)還介紹了力學(xué)中的一些波現(xiàn)象。 要目:(一)連續(xù)力學(xué)中的基本概念:系統(tǒng)運(yùn)動描述;動力學(xué)基本原理;柯西應(yīng)力張量的應(yīng)用;形變張量、形變率張量和本構(gòu)定律;能量方程和激波方程(二)流體物理學(xué):牛頓流體的一般特性;非粘性流;粘性流和熱力學(xué);磁流體動力學(xué)和等離子體的慣性約束;燃燒方程;大氣及海洋運(yùn)動方程。(三)固體力學(xué):線性彈性的一般方程;經(jīng)典問題;能量定理;非線性本構(gòu)定律和均勻化問題。(四)波現(xiàn)象介紹:力學(xué)中的線性波動方程,kdv方程,非線性薛定諤方程。 讀者對象:應(yīng)用數(shù)學(xué)、物理學(xué)、力學(xué)和相關(guān)專業(yè)的大學(xué)高年級本科生和低年級研究生。
連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型-第2版 內(nèi)容簡介
《連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型(第2版)》是作者精心為廣大讀者朋友們編寫而成的,可以讓更多的讀者朋友們從書中了解到更多的知識,從而提升讀者朋友們自身的知識水平。讓我們跟隨作者的腳步來更好的閱讀《連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型(第2版)》中的內(nèi)容!哆B續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型(第2版)》可作為物理、力學(xué)專業(yè)高年級本科生及應(yīng)用數(shù)學(xué)、物理學(xué)和工程類的研究生的教材和參考書。
連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型-第2版 目錄
A few words about notations
PART I FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS
1 Describing the motion of a system: geometry and kinematics
1.1 Deformations
1.2 Motion and its observation (kinematics)
1.3 Description of the motion of a system: Eulerian and Lagrangian derivatives
1.4 Velocity field of a rigid body: helicoidal vector fields
1.5 Differentiation of a volume integral depending on a parameter
2 The fundamental law of dynamics
2.1 The concept of mass
2.2 Forces
2.3 The fundamental law of dynamics and its first consequences
2.4 Application to systems of material points and to rigid bodies
2.5 Galilean frames: the fundamental law of dynamics expressed in a non—Galilean frame
3 The Canchy stress tensor and the Piola—Kirchhoff tensor.Applications
3.1 Hypotheses on the cohesion forces
3.2 The Canchy stress tensor
3.3 General equations of motion
3.4 Symmetry of the stress tensor
3.5 The Piola—Kirchhoff tensor
4 Real and virtual powers
4.1 Study of a system of material points
4.2 General material systems: rigidifying velocities
4.3 Virtual power of the cohesion forces: the general case
4.4 Real power: the kinetic energy theorem
5 Deformation tensor, deformation rate tensor,constitutive laws
5.1 Further properties of deformations
5.2 The deformation rate tensor
5.3 Introduction to rheology: the constitutive laws
5.4 Appendix.Change of variable in a surface integral
6 Energy equations and shock equations
6.1 Heat and energy
6.2 Shocks and the Rankine——Hugoniot relations
PART Ⅱ PHYSICS OF FLUIDS
7 General properties of Newtonian fluids
7.1 General equations of fluid mechanics
7.2 Statics of fluids
7.3 Remark on the energy of a fluid
8 Flows of inviscid fluids
8.1 General theorems
8.2 Plane h'rotational flows
8.3 Transsonic flows
8.4 Linear accoustics
9 Viscous fluids and thermohydraulics
9.1 Equations of viscous incompressible fluids
9.2 Simple flows of viscous incompressible fluids
9.3 Thermohydranlics
9.4 Equations in nondimensional form: similarities
9.5 Notions of stability and turbulence
9.6 Notion of boundary layer
10 Magnetohydrodynamics and inertial confinement of plasmas
10.1 The Maxwell equations and electromagnetism
10.2 Magnetohydrodynamics
10.3 The Tokamak machine
11 Combustion
11.1 Equations for mixtures of fluids
11.2 Equations of chemical kinetics
11.3 The equations of combustion
11.4 Stefan—Maxwell equations
11.5 A simplified problem: the two—species model
12 Equations of the atmosphere and of the ocean
12.1 Preliminaries
12.2 Primitive equations of the atmosphere
12.3 Primitive equations of the ocean
12.4 Chemistry of the atmosphere and the ocean Appendix.The differential operators in spherical coordinates
PART Ⅲ SOLID MECHANICS
13 The general equations of linear elasticity
13.1 Back to the stress—strain law of linear elasticity: the elasticity coefficients of a material
13.2 Boundary value problems in linear elasticity: the linearization principle
13.3 Other equations
13.4 The limit of elasticity criteria
14 Classical problems of elastostatics
14.1 Longitudinal traction——compression of a cylindrical bar
14.2 Uniform compression of an arbitrary body
14.3 Equilibrium of a spherical container subjected to external and internal pressures
14.4 Deformation of a vertical cylindrical body under the action of its weight
14.5 Simple bending of a cylindrical beam
14.6 Torsion of cylindrical shafts
14.7 The Saint—Venant principle
15 Energy theorems, duality, and variational formulations
15.1 Elastic energy of a material
15.2 Duality—generalization
15.3 The energy theorems
15.4 Variational formulations
15.5 Virtual power theorem and variational formulations
16 Introduction to nonlinear constitutive laws and to homogenization
16.1 Nonlinear constitutive laws (nonlinear elasticity)
16.2 Nonlinear elasticity with a threshold(Henky's elastoplastic model)
16.3 Nonconvex energy functions
16.4 Composite materials: the problem of homogenization
17 Nonlinear elasticity and an application to biomechanics
17.1 The equations of nonlinear elasticity
17.2 Boundary conditions—boundary value problems
17.3 Hyperelastic materials
17.4 Hyperelastic materials in biomechanics
PART Ⅳ INTRODUCTION TO WAVE PHENOMENA
18 Linear wave equations in mechanics
18.1 Returning to the equations of linear acoustics and of linear elasticity
18.2 Solution of the one—dimensional wave equation
18.3 Normal modes
18.4 Solution of the wave equation
18.5 Superposition of waves, beats, and packets of waves
19 The soliton equation: the Korteweg—de Vries equation
19.1 Water—wave equations
19.2 Simplified form of the water—wave equations
19.3 The Korteweg—de Vries equation
19.4 The soliton solutions of the KdV equation
20 The nonlinear Schrodinger equation
20.1 Maxwell equations for polarized media
20.2 Equations of the electric field: the linear case
20.3 General case
20.4 The nonlinear Schrodinger equation
20.5 Soliton solutions of the NLS equation
Appendix.The partial differential equations of mechanics
Hints for the exercises
References
Index
連續(xù)介質(zhì)力學(xué)中的數(shù)學(xué)模型-第2版 作者簡介
Roger M.Temam(R.M.特馬姆,美國)是國際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
- >
【精裝繪本】畫給孩子的中國神話
- >
姑媽的寶刀
- >
人文閱讀與收藏·良友文學(xué)叢書:一天的工作
- >
伯納黛特,你要去哪(2021新版)
- >
小考拉的故事-套裝共3冊
- >
煙與鏡
- >
推拿
- >
我與地壇