同調(diào)代數(shù)導(dǎo)論-第2版-(影印版) 版權(quán)信息
- ISBN:9787510098529
- 條形碼:9787510098529 ; 978-7-5100-9852-9
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類:>>
同調(diào)代數(shù)導(dǎo)論-第2版-(影印版) 本書(shū)特色
作者用代數(shù)拓?fù)鋵W(xué)中的與之同源的名詞術(shù)語(yǔ)解釋了同調(diào)代數(shù)的解的過(guò)程。在該全新的版本中,全文都做了更新和徹底地修訂,并且新增了層論和交換范疇的內(nèi)容。 目次:導(dǎo)言; hom 和 tensor函子;特殊模;特定環(huán);創(chuàng)建平臺(tái);同源性;tor 和 ext函子;同調(diào)性和環(huán);同調(diào)性和群;譜序列;參考文獻(xiàn);特殊符號(hào);索引。
同調(diào)代數(shù)導(dǎo)論-第2版-(影印版) 內(nèi)容簡(jiǎn)介
既有大量例題,又有許多代數(shù)應(yīng)用,該書(shū)真是一本必讀書(shū):內(nèi)容清晰、易于遵循。作者用代數(shù)拓?fù)鋵W(xué)中的與之同源的名詞術(shù)語(yǔ)解釋了同調(diào)代數(shù)的解的過(guò)程。在該全新的版本中,全文都做了更新和徹底地修訂,并且新增了層論和交換范疇的內(nèi)容。 目次:導(dǎo)言; Hom 和 Tensor函子;特殊模;特定環(huán);創(chuàng)建平臺(tái);同源性;Tor 和 Ext函子;同調(diào)性和環(huán);同調(diào)性和群;譜序列;參考文獻(xiàn);特殊符號(hào);索引。
同調(diào)代數(shù)導(dǎo)論-第2版-(影印版) 目錄
Preface to the Second EditionHow to Read This Book
Chapter 1 Introduction1.1 SimpliciaIHomology1.2 Categories and Functors1.3 Singular HomologyChapter 2 Hom and Tensor2.1 Modules2.2 Tensor Products2.2.1 AdjointlsomorphismsChapter 3 Special Modules3.1 Projective Modules3.2 InjectiveModules3.3 Flat Modules3.3.1 PurityChapter 4 Specific Rings4.1 Semisimple Rings4.2 von Neumann Regular Rings4.3 Hereditary and Dedekind Rings4.4 Semihereditary and Prufer Rings4.5 Quasi-Frobenius Rings4.6 Semiperfect Rings4.7 Localization4.8 Polynomial RingsChapter 5 Setting the Stage5.1 Categorical Constructions5.2 Limits5.3 Adjoint Functor Theorem for Modules5.4 Sheaves5.4.1 Manifolds5.4.2 Sheaf Constructions5.5 Abelian Categories5.5.1 ComplexesChapter 6 Homology6.1 Homology Functors6.2 Derived Functors6.2.1 Left Derived Functors6.2.2 Axioms6.2.3 Covariant Right Derived Functors6.2.4 Contravariant Right Derived Functors6.3 Sheaf Cohomology6.3.1 Cech Cohomology6.3.2 Riemann-Roch TheoremChapter 7 Tor and Ext7.1 Tor7.1.1 Domains7.1.2 Localization7.2 Ext7.2.1 Baer Sum7.3 Cotorsion Groups7.4 Universal CoefficientsChapter 8 Homology and Rings8.1 Dimensions ofRings8.2 Hilbert's Syzygy Theorem8.3 Stably Free Modules8.4 Commutative Noetherian Local RingsChapter 9 Homology and Groups9.1 Group Extensions9.1.1 Semidirect Products9.1.2 General Extensions and Cohomology9.1.3 Stabilizing Automorphisms9.2 Group Cohomology9.3 Bar Resolutions9.4 Group Homology9.4.1 Schur Multiplier9.5 Change of Groups9.5.1 Restriction and Inflation9.6 Transfer9.7 Tate Groups9.8 Outer Automorphisms of p-Groups9.9 Cohomological Dimension9.10 Division Rings and Brauer GroupsChapter 10 Spectral Sequences10.1 Bicomplexes10.2 Filtrations and Exact Couples10.3 Convergence10.4 Homology of the Total Complex10.5 Cartan-Eilenberg Resolutions10.6 Grothendieck Spectral Sequences10.7 Groups10.8 Rings10.9 Sheaves10.10 Kunneth TheoremsReferencesSpecial NotationIndex
展開(kāi)全部
同調(diào)代數(shù)導(dǎo)論-第2版-(影印版) 作者簡(jiǎn)介
Joseph J. Rotman (J.J.羅特曼)是國(guó)際知名學(xué)者,在數(shù)學(xué)界享有盛譽(yù)。本書(shū)凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。