歡迎光臨中圖網(wǎng) 請 | 注冊
> >>
Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南

Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南

出版社:東南大學(xué)出版社出版時間:2017-10-01
開本: 24cm 頁數(shù): 20,543頁
讀者評分:5分1條評論
中 圖 價:¥53.9(5.5折) 定價  ¥98.0 登錄后可看到會員價
加入購物車 收藏
運費6元,滿39元免運費
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南 版權(quán)信息

Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南 本書特色

TensorFlow是一個采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計算的開源軟件庫。節(jié)點(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺上展開計算,例如臺式計算機中的一個或多個CPU(或GPU),服務(wù)器,移動設(shè)備等等。本書講述TensorFlow相關(guān)知識。

Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南 內(nèi)容簡介

本書很好地介紹了利用神經(jīng)網(wǎng)絡(luò)解決問題的相關(guān)理論與實踐。它涵蓋了構(gòu)建高效應(yīng)用涉及的關(guān)鍵點以及理解新技術(shù)所需的背景知識。

Scikit-Learn與TensorFlow機器學(xué)習(xí)實用指南 目錄

PrefacePart I. The Fundamentals of Machine Learning 1. The Machine Learning Landscape What Is Machine Learning Why Use Machine Learning Types of Machine Learning Systems Supervised/Unsupervised Learning Batch and Online Learning Instance-Based Versus Model-Based Learning Main Challenges of Machine Learning Insufficient Quantity of Training Data Nonrepresentative Training Data Poor-Quality Data Irrelevant Features Overfitting the Training Data Underfitting the Training Data tepping Back Testing and Validating Exercises 2. End-to-End Machine Learning Project Working with Real Data Look at the Big Picture Frame the Problem Select a Performance Measure Check the Assumptions Get the Data Create the Workspace Download the Data Take a Quick Look at the Data Structure Create a Test Set Discover and Visualize the Data to Gain Insights Visualizing Geographical Data Looking for Correlations Experimenting with Attribute Combinations Prepare the Data for Machine Learning Algorithms Data Cleaning Handling Text and Categorical Attributes Custom Transformers Feature Scaling Transformation Pipelines Select and Train a Model Training and Evaluating on the Training Set Better Evaluation Using Cross-Validation Fine-Tune Your Model Grid Search Randomized Search Ensemble Methods Analyze the Best Models and Their Errors Evaluate Your System on the Test Set Launch, Monitor, and Maintain Your System Try It Out! Exercises 3. Classification MNIST Training a Binary Classifier Performance Measures Measuring Accuracy Using Cross-Validation Confusion Matrix Precision and Recall Precision/Recall Tradeoff The ROC Curve Multiclass Classification Error Analysis Multilabel Classification Multioutput Classification…… Part II. Neural Networks and Deep LearningA. Exercise SolutionsB. Machine Learning Project ChecklistC. SVM Dual ProblemD. AutodiffE. Other Popular ANN ArchitecturesIndex
展開全部
商品評論(1條)
  • 主題:書很好,很多實踐

    但是不小心買成了影印版,圖片沒有彩色的看了

    2019/4/15 14:35:39
    讀者:ztw***(購買過本書)
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服