掃一掃
關(guān)注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
湖南省志(1978-2002)?鐵路志
-
>
公路車寶典(ZINN的公路車維修與保養(yǎng)秘籍)
-
>
晶體管電路設(shè)計(下)
-
>
基于個性化設(shè)計策略的智能交通系統(tǒng)關(guān)鍵技術(shù)
-
>
德國克虜伯與晚清火:貿(mào)易與仿制模式下的技術(shù)轉(zhuǎn)移
-
>
花樣百出:貴州少數(shù)民族圖案填色
-
>
識木:全球220種木材圖鑒
超細晶材料的晶界和超塑性 版權(quán)信息
- ISBN:9787560363936
- 條形碼:9787560363936 ; 978-7-5603-6393-6
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
超細晶材料的晶界和超塑性 內(nèi)容簡介
《超細晶材料的晶界和超塑性(影印版 英文版)》討論了多晶體材料中超塑性和晶界滑動的問題,探討了晶界形成和演化的微觀結(jié)構(gòu),分析了經(jīng)過劇烈塑性變形的材料的晶界、紋理和系綜的變化,同時考察了晶界在晶粒間界擴散、弛豫和晶粒生長過程中的作用! 冻毦Р牧系木Ы绾统苄裕ㄓ坝“ 英文版)》適合從事超塑性研究的相關(guān)人員使用,也可供高等院校相關(guān)專業(yè)的師生參考。
超細晶材料的晶界和超塑性 目錄
Contents
INTRODUCTION
1 STRUCTURAL SUPERPLASTICITY OF POLYCRYSTALLINE MATERIALS
1.1. Structural levels, spatial scales and description levels
1.2. Structural superplasticity: from the combination of mechanisms to cooperative grain boundaries sliding
1.3. Structural superplasticity: from meso-description to macroeharacteristics
References
2 CHARACTERISTICS OF GRAIN BOUNDARY ENESEMBLES
2.1. Crystal geometry and structure of intercrystalline boundaries
2.1.1. Methods for describing the structure of the grain boundaries
2.1.2. Analytical representation of the basis of the coincident-site lattice for cubic lattices
2.2. Special grain boundaries in the monoclinic lattice
2.3. Description of the grain boundary misorientation distribution (GBMD)
2.4. Computer model of a polycrystal: a calculation algorithm
References
3 ORIENTATION-DISTRIBUTED PARAMETERS OF THE POLYCRYSTALLINE STRUCTURE
3.1. The distribution function of the grains with respect to crystallographic orientations: calculation methods
3.2. Relationship between the grain boundary misorientation distribution and the ODF
3.3. Correlation orientation of adjacent grains: the concept of the basis spectra of misorientation of the grain boundaries
3.4. Modelling the misorientation spectra of the grain boundaries in the FCC crystals with modelling ODF
References
4 EXPERIMENTAL INVESTIGATIONS OF GRAIN BOUNDARY ENSEMBLES IN POLYCRYSTALS
4.1. Diffraction methods of measuring misorientation
4.1.1. Methods of measuring the misorientation of two adjacent grains
4.1.2. The experimental measurement error
4.2. Experimental spectra of the grain boundaries in FCC polycrystals
4.3. Orientation distribution function in Ni-Cr alloy: experimental and modelling GBMDs
4.3.1. Orientation distribution function in Ni-Cr alloy and stainless steels
4.3.2. Modelling spectra of the misorientation of the grain boundaries in Ni-Cr alloy and AISI stainless steels: comparison with the experimental results
4.4. Special features of the grain boundaries in the FCC materials with a high stacking fault energy
4.4.1. Rolling and annealing texture of aluminium
4.4.2. Grain boundary ensembles in aluminium: experiments and modelling
References
5 GRAIN BOUNDARY SLIDING IN METALLIC BI- AND TRICRYSTALS
5.1. Dislocation nature of grain boundary sliding (GBS)
5.2. Formulation of the model of stimulated grain boundary sliding
5.3. Formal solution and its analysis
5.4. Special features of pure grain boundary sliding
5.5. Local migration of the grain boundary as the mechanism of reorganisation of the triple junction: weak migration approximation
5.6. Variance formulation of the system of equations for the shape of the boundary and pile-up density
5.7. The power of pile-ups of grain boundary dislocations
References
6 PERCOLATION MECHANISM OF DEFORMATION PROCESSES IN ULTRAFINE-GRAINED POLYCRYSTALS
6.1. Percolation mechanism of the formation of a band of cooperative grain boundary sliding
6.2. Conditions of formation of CGBS bands as the condition of realisation of the superplastic deformation regime
6.3. Shear rate along the CGBS band
6.4. Kinetics of deformation in CGBS bands
6.5. Comparison of the calculated values with the experimental results
References
7 PERCOLATION PROCESSES IN A NETWORK OF GRAIN BOUNDARIES IN ULTRAFINE-GRAINED MATERIALS
7.1. Effect of grain boundaries on oxidation and diffusion processes in polycrystalline oxide films
7.2. High-resolution electron microscopy of zirconium oxide: grain clusters, surrounded only by special boundaries
7.3. Effect of the statistics of the grain boundaries on diffusion in zirconium oxide
7.4. Special features of oxidation kinetics under the effect of stresses at the metal/oxide boundary
7.5. Texture and spectrum of misorientation of the grain boundaries in an NiO film on (100) and (111) substrates: modelling and experiments
References
8 MICROSTRUCTURE AND GRAIN BOUNDARY ENSEMBLES IN ULTRAFINE-GRAINED MATERIALS
8.1. Methods of producing ultrafine-grained and nanostructured materials by severe plastic deformation
8.2. Effect of the parameters of quasi-hydrostatic pressure on the microstructure and grain boundary ensembles in nickel
8.3. Spectrum of misorientation of grain boundaries in ultrafine-grained nickel
8.4. Advanced methods of automatic measurement of the grain boundary parameters
8.5. The misorientation distribution of the grain boundaries in ultrafine-grained nickel: experiments and modelling
References
9 GRAIN BOUNDARY PROCESSES IN ULTRAFINE-GRAINED NICKEL AND NANONICKEL
9.1. Grain growth kinetics in ECAP specimens
9.2. Activation energy and stored enthalpy in ultrafine-grained nickel
9.3. Evolution of the microstructure and texture in HPT nickel in annealing
9.4. Superplasticity of nanocrystalline nickel
References
10 DURATION OF THE STABLE FLOW STAGE IN SUPER]PLASTIC DEFORMATION
10.1. Superplastic capacity and the rate sensitivity parameter
10.2. Description of thickness differences of a flat specimen in tensile deformation
10.3. Formation of thickness difference as a random process
10.4. Absorption condition and the equation for limiting strain
10.5. Some properties of limiting strain
References
11 DERIVATION OF CONSTITUTIVE EQUATIONS IN MULTICOMPONENT LOADING CONDITIONS
11.1. From the deformation mechanism to constitutive equations
11.2. Kinematics of polycrystalline continuum
11.3. Strain rate tensor determined by shear along the CGBS bands
11.4. Degenerate cases and variants of coaxiality of the tensors
References
CONCLUSION
INDEX
INTRODUCTION
1 STRUCTURAL SUPERPLASTICITY OF POLYCRYSTALLINE MATERIALS
1.1. Structural levels, spatial scales and description levels
1.2. Structural superplasticity: from the combination of mechanisms to cooperative grain boundaries sliding
1.3. Structural superplasticity: from meso-description to macroeharacteristics
References
2 CHARACTERISTICS OF GRAIN BOUNDARY ENESEMBLES
2.1. Crystal geometry and structure of intercrystalline boundaries
2.1.1. Methods for describing the structure of the grain boundaries
2.1.2. Analytical representation of the basis of the coincident-site lattice for cubic lattices
2.2. Special grain boundaries in the monoclinic lattice
2.3. Description of the grain boundary misorientation distribution (GBMD)
2.4. Computer model of a polycrystal: a calculation algorithm
References
3 ORIENTATION-DISTRIBUTED PARAMETERS OF THE POLYCRYSTALLINE STRUCTURE
3.1. The distribution function of the grains with respect to crystallographic orientations: calculation methods
3.2. Relationship between the grain boundary misorientation distribution and the ODF
3.3. Correlation orientation of adjacent grains: the concept of the basis spectra of misorientation of the grain boundaries
3.4. Modelling the misorientation spectra of the grain boundaries in the FCC crystals with modelling ODF
References
4 EXPERIMENTAL INVESTIGATIONS OF GRAIN BOUNDARY ENSEMBLES IN POLYCRYSTALS
4.1. Diffraction methods of measuring misorientation
4.1.1. Methods of measuring the misorientation of two adjacent grains
4.1.2. The experimental measurement error
4.2. Experimental spectra of the grain boundaries in FCC polycrystals
4.3. Orientation distribution function in Ni-Cr alloy: experimental and modelling GBMDs
4.3.1. Orientation distribution function in Ni-Cr alloy and stainless steels
4.3.2. Modelling spectra of the misorientation of the grain boundaries in Ni-Cr alloy and AISI stainless steels: comparison with the experimental results
4.4. Special features of the grain boundaries in the FCC materials with a high stacking fault energy
4.4.1. Rolling and annealing texture of aluminium
4.4.2. Grain boundary ensembles in aluminium: experiments and modelling
References
5 GRAIN BOUNDARY SLIDING IN METALLIC BI- AND TRICRYSTALS
5.1. Dislocation nature of grain boundary sliding (GBS)
5.2. Formulation of the model of stimulated grain boundary sliding
5.3. Formal solution and its analysis
5.4. Special features of pure grain boundary sliding
5.5. Local migration of the grain boundary as the mechanism of reorganisation of the triple junction: weak migration approximation
5.6. Variance formulation of the system of equations for the shape of the boundary and pile-up density
5.7. The power of pile-ups of grain boundary dislocations
References
6 PERCOLATION MECHANISM OF DEFORMATION PROCESSES IN ULTRAFINE-GRAINED POLYCRYSTALS
6.1. Percolation mechanism of the formation of a band of cooperative grain boundary sliding
6.2. Conditions of formation of CGBS bands as the condition of realisation of the superplastic deformation regime
6.3. Shear rate along the CGBS band
6.4. Kinetics of deformation in CGBS bands
6.5. Comparison of the calculated values with the experimental results
References
7 PERCOLATION PROCESSES IN A NETWORK OF GRAIN BOUNDARIES IN ULTRAFINE-GRAINED MATERIALS
7.1. Effect of grain boundaries on oxidation and diffusion processes in polycrystalline oxide films
7.2. High-resolution electron microscopy of zirconium oxide: grain clusters, surrounded only by special boundaries
7.3. Effect of the statistics of the grain boundaries on diffusion in zirconium oxide
7.4. Special features of oxidation kinetics under the effect of stresses at the metal/oxide boundary
7.5. Texture and spectrum of misorientation of the grain boundaries in an NiO film on (100) and (111) substrates: modelling and experiments
References
8 MICROSTRUCTURE AND GRAIN BOUNDARY ENSEMBLES IN ULTRAFINE-GRAINED MATERIALS
8.1. Methods of producing ultrafine-grained and nanostructured materials by severe plastic deformation
8.2. Effect of the parameters of quasi-hydrostatic pressure on the microstructure and grain boundary ensembles in nickel
8.3. Spectrum of misorientation of grain boundaries in ultrafine-grained nickel
8.4. Advanced methods of automatic measurement of the grain boundary parameters
8.5. The misorientation distribution of the grain boundaries in ultrafine-grained nickel: experiments and modelling
References
9 GRAIN BOUNDARY PROCESSES IN ULTRAFINE-GRAINED NICKEL AND NANONICKEL
9.1. Grain growth kinetics in ECAP specimens
9.2. Activation energy and stored enthalpy in ultrafine-grained nickel
9.3. Evolution of the microstructure and texture in HPT nickel in annealing
9.4. Superplasticity of nanocrystalline nickel
References
10 DURATION OF THE STABLE FLOW STAGE IN SUPER]PLASTIC DEFORMATION
10.1. Superplastic capacity and the rate sensitivity parameter
10.2. Description of thickness differences of a flat specimen in tensile deformation
10.3. Formation of thickness difference as a random process
10.4. Absorption condition and the equation for limiting strain
10.5. Some properties of limiting strain
References
11 DERIVATION OF CONSTITUTIVE EQUATIONS IN MULTICOMPONENT LOADING CONDITIONS
11.1. From the deformation mechanism to constitutive equations
11.2. Kinematics of polycrystalline continuum
11.3. Strain rate tensor determined by shear along the CGBS bands
11.4. Degenerate cases and variants of coaxiality of the tensors
References
CONCLUSION
INDEX
展開全部
超細晶材料的晶界和超塑性 作者簡介
A.Zhilyaev,博士,西班牙國家研究委員會(CSIC)、西班牙國家冶金技術(shù)研究中心(CENIM)教授。
書友推薦
- >
我從未如此眷戀人間
- >
姑媽的寶刀
- >
伯納黛特,你要去哪(2021新版)
- >
苦雨齋序跋文-周作人自編集
- >
自卑與超越
- >
伊索寓言-世界文學(xué)名著典藏-全譯本
- >
史學(xué)評論
- >
小考拉的故事-套裝共3冊
本類暢銷