一、鋁電解惰性陽極、惰性可潤濕陰極及電解新工藝[1]鋁電解用SnO2基惰性陽極的研究[2]LaboratorystudyonTiB2-basedceramicforaluminumreductioncells[3]ResearchprogressinTiB2wettablecathodeforaluminumreduction[4]DevelopmentofCup-ShapedFunctionallyGradientNiFe2O4BasedCermetInertAnodeforAluminunReduction
[5]AluminaSolubilityinNa3AlF6-K3AlF6-AlF3MoltenSaltSystemProspectiveforAluminumElectrolysisatLowerTemperature[6]FurtherDevelopmentonNiFe2O4BasedCermetInertAnodesforAluminumElectrolysis二、鋁電解工藝優(yōu)化、自動控制與計算機仿真[7]TheEffectofanAluminaLayerattheElectrolyteAluminumInterface
-aLaboratoryStudy[J][8]Theinhibitionofanodeeffectinaluminumelectrolysis[A].LightMetals,1991[C].ProcessbyAnodeU.S.A.,1991,2.489-494[9]160kA預(yù)焙鋁電解槽區(qū)域電流效率[10]點式下料鋁電解槽氧化鋁濃度新型估計模型[11]Basetemperaturemodelforpointfeetingaluminumreductioncells[12]Improvedfiniteelementmodelforelectro-magneticanalysisinaluminumcells
三、高溫熔鹽電解過程電催化[13]OxygenOvervoltageonSnO2BasedAnodesinNaF-AlF3-AL2O3Melts[A].ElectrolyticEffectsofDopingAgent,Electrochem.Acta[14]Progressinstudiesofelectrocatalysisanddopedcarbonanodeinaluminumelectrolysiscells[15]Ontheelectrocatalysisofdopedcarbonanodeinaluminumelectrolysis
[16]高溫氯化物融體氯電極過程的電催化作用[17]Electrocatalysisofcarbonanodeinaluminumelectrolysis四、濕法冶金電解過程電催化[18]鋅電解節(jié)能惰性陽極的研究[19]用于Ni和Zn電積的節(jié)能陽極(DSA)實驗研究[20]ANovelPorousPb-AgAnodeforEnergy-savinginZincElectro-winningPartI:LaboratoryPreparationandProperties[21]ANovelPorousPb-AgAnodeforEnergy-savinginZincElectro-winningPart
Ⅱ:PreparationandPilotPlantTestofLargeSizeAnode[22]Oxygenevolutionandcorrosionbehaviorsofco-depositedPbPb-MnO2compositeanodeforelectrowinningofnonferrousmetals[23]ElectrochemicalperformanceofaPbPb-MnO2compositeanodeinsulfuricacidsolutioncontainingMn2[24]Electrochemicalbehaviorsofco-depositedPbPb-MnO2compositeanodeinsulfuricacid
solution–TafelandEISinvestigations五、電化學(xué)儲能材料與器件[25]天然石墨中嵌脫鋰離子過程的研究[26]EffectofcoolingmodesonmicrostructureandelectrochemicalperformanceofLiFePO4[27]CoatingofLiNi13Mn13Co13O2cathodematerialswithaluminabysolidstatereactionatroomtemperature[28]Synthesisofnitrogen-containinghollowcarbonmicrospheresbyamodifiedtemplatemethodasanodesforadvancedsodium-ionbatteries
[29]Confiningseleniuminnitrogen-containinghierarchicalporouscarbonforhigh-raterechargeablelithium-seleniumbatteries[30]AsimpleSDS-assistedself-assemblymethodforthesynthesisofhollowcarbonnanospherestoencapsulatesulfurforadvancedlithium-sulfurbatteries.[31]
Electrochemicalimpedancespectroscopystudyofalithiumsulfurbattery:Modelingandanalysisofcapacityfading.JournalofTheElectrochemicalSociety[32]Anelectrochemical–thermalmodelbasedondynamicresponsesforlithiumironphosphatebattery[33]NumericalAnalysisofDistributionandEvolutionofReactionCurrentDensityinDischargeProcessofLithium-IonPowerBattery
[34]Uniquestarchpolymerelectrolyteforhighcapacityall-solid-statelithiumsulfurbattery.GreenChem[35]Afastchargingdischargingall-solid-statelithiumionbatterybasedonPEO-MIL-53(Al)-LiTFSIthinfilmelectrolyte[36]EffectofNi-dopedonelectrochemicalcapacitanceofMnO2electrodematerial
[37]Preparationandpropertiesofpitchcarbonbasedsupercapacitor六、太陽電池與光電催化[38]CyclicvoltammetrystudyofelectrodepositionofCu(In,Ga)Se2thinfilms[39]InsitugrowthofCu2ZnSnS4thinfilmsbyreactivemagnetronco-sputtering[40]Electrodepositionofcobaltselenidethinfilms[41]FabricationofternaryCu-Sn-Ssulfidesbyamodifiedsuccessiveioniclayeradsorptionandreaction(SILAR)method[42]ColloidalsynthesisandcharacterisationofCu3SbSe3nanocrystals[43].KesteriteCu2ZnSn(S,Se)4SolarCellswithbeyond8%EfficiencybyaSol–GelandSelenizationProces
七、學(xué)術(shù)報告與科技評述[44]我國鋁電解技術(shù)今后的研究與開發(fā)課題[45]論我國鋁企業(yè)的產(chǎn)品結(jié)構(gòu)調(diào)整[46]加強有色冶金基礎(chǔ)研究的建議[47]論鋁電解的節(jié)能潛力[48]電化學(xué)新材料的若干發(fā)展前沿[49]能源新材料的若干發(fā)展前沿[50]戰(zhàn)略金屬鈹材料的可持續(xù)發(fā)展八、其他(氧化鋁、TiAl合金、自蔓延高溫合成、傳感器、光催化劑、燃料電池電催化、泡沫材料、超細(xì)粉體)[51]強化燒結(jié)法生產(chǎn)氧化鋁新工藝的研究與實踐[52]氫氧化鋁晶粒強度的應(yīng)力狀態(tài)分析[53]AnewheattreatmentprocessingforTiAlbasedalloy
[54]自蔓延高溫合成中絕熱溫度的編程計算[55]StudyonCuO-BaTiO3semiconductorCO2sensor[56]納米TiO2光催化劑的電化學(xué)法制備及其表征[57]Preparationofprecursorforstainlesssteelfoam[58]低溫?zé)崽幚硪约案吣芮蚰χ苽涑?xì)氧化鋁的影響