書(shū)馨卡幫你省薪 2024個(gè)人購(gòu)書(shū)報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)

廢棄塑料在超臨界水中的資源化利用

作者:金輝
出版社:科學(xué)出版社出版時(shí)間:2023-06-01
開(kāi)本: 其他 頁(yè)數(shù): 280
中 圖 價(jià):¥193.5(7.5折) 定價(jià)  ¥258.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書(shū)更多>

廢棄塑料在超臨界水中的資源化利用 版權(quán)信息

廢棄塑料在超臨界水中的資源化利用 本書(shū)特色

希望引入新技術(shù)來(lái)解決現(xiàn)有廢棄塑料處理問(wèn)題,為相關(guān)領(lǐng)域的從業(yè)者和科研人員提供新的思路

廢棄塑料在超臨界水中的資源化利用 內(nèi)容簡(jiǎn)介

隨著科學(xué)技術(shù)的發(fā)展,塑料制品給社會(huì)帶來(lái)了巨大便利,然而塑料制品巨大用量的直接結(jié)果是塑料廢棄物的急劇增加,嚴(yán)重威脅到生態(tài)環(huán)境和人類社會(huì)的健康發(fā)展。傳統(tǒng)塑料處理技術(shù)如填埋、焚燒、造粒再生、熱解等,存在著污染環(huán)境、資源浪費(fèi)、再生制品性能差、成本高等問(wèn)題。眾所周知,超臨界水具有較高的擴(kuò)散性和溶解度,較低的介電常數(shù)和粘度,近年來(lái),超臨界水處理技術(shù)在化石能源高效清潔利用方面得到了廣泛應(yīng)用。在這本書(shū)中,我們將從*基本的東西開(kāi)始,首優(yōu)選行廢棄塑料現(xiàn)狀及危害、傳統(tǒng)處理方法的弊端、超臨界水處理廢棄塑料的原理、工藝流程等基礎(chǔ)知識(shí)的普及。隨后深入到主題,總結(jié)了前人的研究成果,重點(diǎn)介紹了超臨界水氣化塑料、液化塑料、污染物共處理、二氧化碳固定等方面的實(shí)驗(yàn)研究和模型建立,展示了超臨界水處理廢棄塑料技術(shù)的近期新實(shí)驗(yàn)方法和研究成果。這本書(shū)集中提供了超臨界水在廢棄塑料資源化利用方面的研究工作,希望引入新技術(shù)來(lái)解決現(xiàn)有廢棄塑料處理問(wèn)題,為相關(guān)領(lǐng)域的從業(yè)者和科研人員提供新的思路,為該技術(shù)的工業(yè)應(yīng)用提供實(shí)驗(yàn)數(shù)據(jù)和理論依據(jù),推動(dòng)廢棄塑料利用行業(yè)的快速發(fā)展。

廢棄塑料在超臨界水中的資源化利用 目錄

Contents List of figures ix List of tables xix Foreword xxi Acknowledgement xxiii Abbreviations xxv 1.Background introduction 1 1.1 Current situation and hazards of plastic waste 1 1.1.1 Pollution to the natural environment 2 1.1.2 A threat to human health 4 1.1.3 Cause a waste of resources 5 1.2 Traditional treatment methods6 1.2.1 Landfill treatment 7 1.2.2 Mechanical recovery 7 1.2.3 Incineration method 8 1.2.4 Thermal decomposition 8 1.3 Supercritical water technology 9 1.3.1 Supercritical water characteristics 9 1.3.2 Resource utilization of waste plastics in supercritical water 10 References 20 2.Analysis of types of plastics 29 2.1 Introduction to raw materials 29 2.1.1 Polycarbonate plastic 29 2.1.2 Polypropylene plastic 29 2.1.3 Acrylonitrile butadiene styrene plastic 29 2.1.4 Polyethylene terephthalate plastic 31 2.1.5 High-impaa polystyrene plastic 31 2.1.6 Polystyrene plastic 31 2.1.7 Polyethylene plastic 32 2.1.8 Urea—formaldehyde plastic 32 2.1.9 Circuit board 32 2.1.10 Lignite 33 2.1.11 Soda lignin 33 2.1.12 Artificial seawater 33 2.1.13 Formic add and hydrochloric acid solvent 33 2.2 Material characterization 34 2.2.1 Elemental and proximate analysis 34 2.2.2 Thermogravimetric analysis 34 2.3 Experimental bench 40 2.3.1 Quartz tube reactor 40 2.3.2 Batch kettle reactor 41 2.4 Product analysis 42 2.4.1 Gas phase products 42 2.4.2 Liquid phase products 43 2.4.3 Solid phase products 45 References 46 3.Resource utilization of thermoplastics in supercritical water 47 3.1 Gasification 47 3.1.1 Experimental investigation on gasification characteristics of polycarbonate microplastics in supercritical water 47 3.1.2 Experimental study on gasification performance of polypropylene plastics in supercritical water 58 3.1.3 Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene microplastics in supercritical water 74 3.1.4 Experimental investigation on gasification characteristics of polyethylene terephthalate microplastics in supercritical water 85 3.1.5 Experimental investigation on gasification characteristics of high impact polystyrene plastics in supercritical water 99 3.2 Liquefaction 110 3.2.1 Hydrothermal liquefaction of polycarbonate plastics in sub-/supercritical water and an exploration of reaction pathways 110 3.3 Liquefaction reaction pathways exploration 123 3.3.1 Liquefaction kinetics of polycarbonate 126 3.4 Carbon dioxide fixation 141 3.4.1 In the supercritical water/C02 environment 141 3.4.2 In C02 environment 147 3.5 Coordinated treatment of pollutants 157 3.5.1 Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends 157 3.5.2 Cogasification of plastic wastes and soda lignin in supercritical water 169 3.6 Preparation of hydrophobic materials 182 3.6.1 Hydrophobic behavior 183 3.6.2 Microstructure 186 3.6.3 Functional groups 191 References 193 4.Resource utilization of thermosetting plastics in supercritical water 201 4.1 Hydrogen-rich syngas production by gasification of urea—formaldehyde plastics in supercritical water 201 4.1.1 Effect of reaction temperature 201 4.1.2 Effect of reaction time 202 4.1.3 Effect of feedstock mass fraction 203 4.1.4 Effect of reaction pressure 204 4.1.5 Compared with the polystyrene plastics 205 4.1.6 Reaction analysis 207 4.1.7 Kinetic study 207 4.1.8 Conclusions 209 4.2 Resource utilization of circuit boards 210 4.2.1 Effect of reaction temperature 210 4.2.2 Effect of the reaction time 215 4.2.3 Effect of feedstock concentration 219 4.2.4 Effect of additive 220 4.2.5 Conclusion 222 References 223 5.Development prospects for resource utilization of waste plastics 227 5.1 Necessity of recycling waste plastics 227 5.1.1 Biodiversity conservation 228 5.1.2 Maintaining soil fertility 229 5.1.3 Saving resources 231 5.2 Comprehensive treatment countermeasures of waste plastics 232 5.2.1 Policy 232 5.2.2 General situation of domestic and foreign waste plastic treatment 237 5.2.3 Existing shortcomings 239 5.2.4 Improvement measures 240 5.3 Prospect of waste plastics treatment with supercritical water 242 5.3.1 Existing problems 243 5.3.2 Future development direction 244 References 245 Index 249 List of figures Figure 1.1 Global annual production of plastic.1 Figure 1.2 The transfer of microplastic in different environments.3 Figure 1.3 The formation and influence of microplastic in the ocean.3 Figure 1.4 Main treatment methods for waste plastic.6 Figure 2.1 Chemical structure of(A)BPA;(B)DPC;(C)PC.BPA,bisphenol A;30 DPC,diphenyl carbonate;PC,polycarbonate. Figure 2.2 Molecular structure of ABS plastic here.ABS,acrylonitrile butadiene styrene.30 Figure 2.3 Chemical structure of polyethylene terephthalate(PET).31 Figure 2.4 Molecular structure of HIPS plastic.HIPS,high-impact polystyrene.31 Figure 2.5 Molecular structure of PS plastic.PS,polymer synthesized.32 Figure 2.6 Chemical structures of(A)hydroxymethylurea;(B)1,3-32 bishydroxym
展開(kāi)全部
暫無(wú)評(píng)論……
書(shū)友推薦
返回頂部
中圖網(wǎng)
在線客服