融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版) 版權(quán)信息
- ISBN:9787302656005
- 條形碼:9787302656005 ; 978-7-302-65600-5
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無
- 重量:暫無
- 所屬分類:>
融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版) 本書特色
《融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版)》展示了融合數(shù)字電路與存內(nèi)計(jì)算的技術(shù)路線,證明了充分利用數(shù)字電路與存內(nèi)計(jì)算的優(yōu)勢(shì),結(jié)合器件、電路、架構(gòu)和算法應(yīng)用等多層次聯(lián)合優(yōu)化能夠?qū)崿F(xiàn) 高能效的神經(jīng)網(wǎng)絡(luò)處理器。
融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版) 內(nèi)容簡(jiǎn)介
神經(jīng)網(wǎng)絡(luò)算法在諸多領(lǐng)域具有廣泛應(yīng)用,本書針對(duì)神經(jīng)網(wǎng)絡(luò)在低功耗智能設(shè)備上實(shí)際應(yīng)用中遇到的關(guān)鍵挑戰(zhàn),研究了融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器。
本書創(chuàng)新成果包括:①提出了一種基于特定卷積核的數(shù)據(jù)復(fù)用架構(gòu),提升了能量效率;②針對(duì)不規(guī)則稀疏的額外硬件開銷,設(shè)計(jì)了頻域神經(jīng)網(wǎng)絡(luò)處理器,支持高效FFT計(jì)算和頻域二維數(shù)據(jù)復(fù)用;③提出了一種存內(nèi)計(jì)算系統(tǒng)架構(gòu),支持分塊結(jié)構(gòu)化稀疏、數(shù)據(jù)復(fù)用與ADC動(dòng)態(tài)關(guān)斷;④針對(duì)現(xiàn)有存內(nèi)計(jì)算芯片難以支持大規(guī)模網(wǎng)絡(luò)的挑戰(zhàn),提出了組相聯(lián)稀疏存內(nèi)計(jì)算架構(gòu),支持乒乓權(quán)重更新,并進(jìn)行了流片驗(yàn)證。
本書展示了融合數(shù)字電路與存內(nèi)計(jì)算的技術(shù)路線。證明充分利用數(shù)字電路與存內(nèi)計(jì)算的優(yōu)勢(shì),結(jié)合器件、電路、架構(gòu)和算法應(yīng)用等多層次聯(lián)合優(yōu)化能夠?qū)崿F(xiàn)更高能效。
融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版) 目錄
1 Introduction
1.1 Research Background and Significance
1.1.1 Development Trends of Neural Network
1.1.2 Requirements of NN Processor
1.1.3 Energy-Efficient NN Processors
1.2 Summary of the Research Work
1.2.1 Overall Framework of the Research Work
1.2.2 Main Contributions of This Book
1.3 Overall Structure of This Book
References
2 Basics and Research Status of Neural Network Processors
2.1 Basics of Neural Network Algorithms
2.2 Basics of Neural Network Processors
2.3 Research Status of Digital-Circuits-Based NN Processors
2.3.1 Data Reuse
2.3.2 Low-Bit Quantization
2.3.3 NN Model Compression and Sparsity
2.3.4 Summary of Digital-Circuits-Based NN Processors
2.4 Research Status of CIM NN Processors
2.4.1 CIM Principle
2.4.2 CIM Devices
2.4.3 CIM Circuits
2.4.4 CIM Macro
2.4.5 Summary of CIM NN Processors
2.5 Summary of This Chapter
References
3 Energy-Efficient NN Processor by Optimizing Data Reuse for Specific Convolutional Kernels
3.1 Introduction
3.2 Previous Data Reuse Methods and the Constraints
3.3 The KOP3 Processor Optimized for Specific Convolutional Kernels
3.4 Processing Array Optimized for Specific Convolutional Kernels
3.5 Local Memory Cyclic Access Architecture and Scheduling Strategy
3.6 Module-Level Parallel Instruction Set and the Control Circuits
3.7 Experimental Results
3.8 Conclusion
References
4 Optimized Neural Network Processor Based on Frequency-Domain Compression Algorithm
4.1 Introduction
4.2 The Limitations of Irregular Sparse Optimization and CirCNN Frequency-Domain Compression Algorithm
4.3 Frequency-Domain NN Processor STICKER-T
4.4 Global-Parallel Bit-Serial FFT Circuits
4.5 Frequency-Domain 2D Data-Reuse MAC Array
4.6 Small-Area Low-Power Block-Wise TRAM
4.7 Chip Measurement Results and Comparison
4.8 Summary of This Chapter
References
5 Digital Circuits and CIM Integrated NN Processor
5.1 Introduction
5.2 The Advantage of CIM Over Pure Digital Circuits
5.3 Design Challenges for System-Level CIM Chips
5.4 Sparse CIM Processor STICKER-IM
5.5 Structural Block-Wise Weight Sparsity and Dynamic Activation Sparsity
5.6 Flexible Mapping and Scheduling and Intra/Inter-Macro Data Reuse
5.7 Energy-Efficient CIM Macro with Dynamic ADC Power-Off
5.8 Chip Measurement Results and Comparison
5.9 Summary of This Chapter
References
6 A “Digital+CIM” Processor Supporting Large-Scale NN Models
6.1 Introduction
6.2 The Challenges of System-Level CIM Chips to Support Large-Scale NN Models
6.3 “Digital+CIM” NN Processor STICKER-IM
6.4 Set-Associate Block-Wise Sparse Zero-Skipping Circuits
6.5 Ping-Pong CIM and Weight Update Architecture
6.6 Ping-Pong CIM Macro with Dynamic ADC Precision
6.7 Chip Measurement Results and Comparison
6.8 Summary of This Chapter
References
7 Summary and Prospect
7.1 Summary of This Book
7.2 Prospect of This Book
展開全部
融合數(shù)字電路與存內(nèi)計(jì)算的高能效神經(jīng)網(wǎng)絡(luò)處理器(英文版) 作者簡(jiǎn)介
岳金山博士于2016年和2021年分別獲得清華大學(xué)本科和博士學(xué)位,于2021年進(jìn)入 微電子研究所從事博士后研究。主要研究方向包括高能效神經(jīng)網(wǎng)絡(luò)加速芯片、存內(nèi)計(jì)算和基于新型器件的電路與系統(tǒng)。目前已發(fā)表30余篇期刊/會(huì)議論文,包括2篇一作JSSC和3篇一作ISSCC。曾獲得ASP-DAC2021學(xué)生論壇 海報(bào)獎(jiǎng),清華大學(xué) 博士學(xué)位論文獎(jiǎng),入選北京市科技新星計(jì)劃。