-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學(xué):追尋崇高景觀
簡明高等數(shù)學(xué):基礎(chǔ)篇 版權(quán)信息
- ISBN:9787312021459
- 條形碼:9787312021459 ; 978-7-312-02145-9
- 裝幀:簡裝本
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
簡明高等數(shù)學(xué):基礎(chǔ)篇 內(nèi)容簡介
前言
第1章 極限與連續(xù)
1.1 函數(shù)
1.1.1 常量與變量
1.1.2 函數(shù)的概念
1.1.3 函數(shù)的幾種特性
1.1.4 初等函數(shù)
1.1.5 經(jīng)濟(jì)學(xué)中常用的函數(shù)
1.2 函數(shù)的極限
1.2.1 函數(shù)極限的概念
1.2.2 數(shù)列的極限
1.2.3 極限的性質(zhì)
l.3 無窮小量和無窮大量極限運(yùn)算法則
1.3.1 無窮小與無窮大
1.3.2 無窮小的比較
1.3.3 極限運(yùn)算法則
1.4 極限存在準(zhǔn)則兩個(gè)重要極限
1.4.1 極限存在準(zhǔn)則
1.4.2 兩個(gè)重要極限
1.5 函數(shù)的連續(xù)性與性質(zhì)
1.5.1 函數(shù)的連續(xù)性
1.5.2 函數(shù)的間斷點(diǎn)
1.5.3 連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性
1.5.4 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
本章小結(jié)
數(shù)學(xué)實(shí)驗(yàn)一:用Mathernatica求函數(shù)極限
第2章 導(dǎo)數(shù)與微分
2.1 導(dǎo)數(shù)的概念
2.1.1 引例
2.1.2 導(dǎo)數(shù)的定義
2.1.3 函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系
2.2 基本初等函數(shù)的導(dǎo)數(shù)公式
2.3 函數(shù)和、差、積、商的求導(dǎo)法則
2.3.1 函數(shù)的和差的求導(dǎo)法則
2.3.2 函數(shù)乘積的求導(dǎo)法則
2.3.3 函數(shù)商的求導(dǎo)法則
2.4 反函數(shù)及復(fù)合函數(shù)求導(dǎo)法初等函數(shù)求導(dǎo)
2.4.1 反函數(shù)的導(dǎo)數(shù)
2.4.2 復(fù)合函數(shù)的求導(dǎo)法則
2.4.3 初等函數(shù)求導(dǎo)
2.5 高階導(dǎo)數(shù)
2.6 隱函數(shù)的導(dǎo)數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)
2.6.1 隱函數(shù)的導(dǎo)數(shù)
2.6.2 由參數(shù)方程所確定的函數(shù)的求導(dǎo)
2.7 微分的概念及應(yīng)用
2.7.1 微分的概念
2.7.2 微分的幾何意義
2.7.3 基本初等函數(shù)的微分公式與微分運(yùn)算法則
2.7.4 微分在近似計(jì)算上的應(yīng)用
本章小結(jié)
數(shù)學(xué)實(shí)驗(yàn)二:用Mathematica求函數(shù)的導(dǎo)數(shù)和微分
第3章 中值定理與導(dǎo)數(shù)的應(yīng)用
3.1 中值定理
3.1.1 羅爾(Rolle)定理
3.1.2 拉格朗日(Lagrange)中值定理
……
第4章 積分及其應(yīng)用
第5章 多元函數(shù)的微積分
附錄Ⅰ 初等數(shù)學(xué)常用公式
附錄Ⅱ 常用平面曲線及其方程
附錄Ⅲ MATHEMATICA簡介
參考文獻(xiàn)
簡明高等數(shù)學(xué):基礎(chǔ)篇 目錄
第1章 極限與連續(xù)
1.1 函數(shù)
1.1.1 常量與變量
1.1.2 函數(shù)的概念
1.1.3 函數(shù)的幾種特性
1.1.4 初等函數(shù)
1.1.5 經(jīng)濟(jì)學(xué)中常用的函數(shù)
1.2 函數(shù)的極限
1.2.1 函數(shù)極限的概念
1.2.2 數(shù)列的極限
1.2.3 極限的性質(zhì)
l.3 無窮小量和無窮大量極限運(yùn)算法則
1.3.1 無窮小與無窮大
1.3.2 無窮小的比較
1.3.3 極限運(yùn)算法則
1.4 極限存在準(zhǔn)則兩個(gè)重要極限
1.4.1 極限存在準(zhǔn)則
1.4.2 兩個(gè)重要極限
1.5 函數(shù)的連續(xù)性與性質(zhì)
1.5.1 函數(shù)的連續(xù)性
1.5.2 函數(shù)的間斷點(diǎn)
1.5.3 連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性
1.5.4 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
本章小結(jié)
數(shù)學(xué)實(shí)驗(yàn)一:用Mathernatica求函數(shù)極限
第2章 導(dǎo)數(shù)與微分
2.1 導(dǎo)數(shù)的概念
2.1.1 引例
2.1.2 導(dǎo)數(shù)的定義
2.1.3 函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系
2.2 基本初等函數(shù)的導(dǎo)數(shù)公式
2.3 函數(shù)和、差、積、商的求導(dǎo)法則
2.3.1 函數(shù)的和差的求導(dǎo)法則
2.3.2 函數(shù)乘積的求導(dǎo)法則
2.3.3 函數(shù)商的求導(dǎo)法則
2.4 反函數(shù)及復(fù)合函數(shù)求導(dǎo)法初等函數(shù)求導(dǎo)
2.4.1 反函數(shù)的導(dǎo)數(shù)
2.4.2 復(fù)合函數(shù)的求導(dǎo)法則
2.4.3 初等函數(shù)求導(dǎo)
2.5 高階導(dǎo)數(shù)
2.6 隱函數(shù)的導(dǎo)數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)
2.6.1 隱函數(shù)的導(dǎo)數(shù)
2.6.2 由參數(shù)方程所確定的函數(shù)的求導(dǎo)
2.7 微分的概念及應(yīng)用
2.7.1 微分的概念
2.7.2 微分的幾何意義
2.7.3 基本初等函數(shù)的微分公式與微分運(yùn)算法則
2.7.4 微分在近似計(jì)算上的應(yīng)用
本章小結(jié)
數(shù)學(xué)實(shí)驗(yàn)二:用Mathematica求函數(shù)的導(dǎo)數(shù)和微分
第3章 中值定理與導(dǎo)數(shù)的應(yīng)用
3.1 中值定理
3.1.1 羅爾(Rolle)定理
3.1.2 拉格朗日(Lagrange)中值定理
……
第4章 積分及其應(yīng)用
第5章 多元函數(shù)的微積分
附錄Ⅰ 初等數(shù)學(xué)常用公式
附錄Ⅱ 常用平面曲線及其方程
附錄Ⅲ MATHEMATICA簡介
參考文獻(xiàn)
- >
有舍有得是人生
- >
苦雨齋序跋文-周作人自編集
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
羅庸西南聯(lián)大授課錄
- >
煙與鏡
- >
巴金-再思錄
- >
二體千字文
- >
月亮與六便士