書馨卡幫你省薪 2024個(gè)人購書報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊

智能視感學(xué)-英文版

出版社:中國水利水電出版社出版時(shí)間:2012-08-01
開本: 16開 頁數(shù): 304
讀者評(píng)分:5分1條評(píng)論
本類榜單:教材銷量榜
中 圖 價(jià):¥25.4(6.5折) 定價(jià)  ¥39.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書更多>

智能視感學(xué)-英文版 版權(quán)信息

智能視感學(xué)-英文版 本書特色

《智能視感學(xué)(英文版)》作者張秀彬、曼蘇樂根據(jù)自己和博士、碩士生們的研究成果,結(jié)合多年從事本科生及研究生的教學(xué)經(jīng)驗(yàn)與體會(huì)整理出這本教材,將其定名為《智能視感學(xué)》。考慮到目前在該學(xué)科方向上尚缺乏較為淺顯易懂、又能形成體系的簡明教程,作者想做一次嘗試,希望能用一種較為通俗和深入淺出的方法來闡述智能視感的一些深?yuàn)W知識(shí),對(duì)初學(xué)者能夠起到入門和建立繼續(xù)深造的起點(diǎn)之作用。 這是一本基于圖像信息的非接觸式傳感理論的技術(shù)書。教材中所闡述的內(nèi)容涉及到圖像識(shí)別、視差原理、計(jì)算幾何原理、計(jì)算機(jī)圖像圖形學(xué),乃至人類對(duì)自然界認(rèn)識(shí)的諸多先驗(yàn)知識(shí)如何與視感檢測相結(jié)合的方法和技術(shù)問題。因此,本書是一本多學(xué)科交叉的較為前沿的大學(xué)研究型教材。

智能視感學(xué)-英文版 內(nèi)容簡介

本書從計(jì)算機(jī)視感及其信號(hào)處理的基本概念與基礎(chǔ)理論出發(fā),闡述了基于圖像信息的識(shí)別、理解與檢測技術(shù)原理與方法。本書根據(jù)作者多年來從事智能視感理論與技術(shù)研究成果,結(jié)合研究性本科與研究生教學(xué)特點(diǎn)編撰而成。全書分為基礎(chǔ)篇與應(yīng)用篇兩大部分,其中,基礎(chǔ)篇系統(tǒng)地介紹了智能視感的基本原理、方法、關(guān)鍵技術(shù)及其算法;應(yīng)用篇?jiǎng)t由配合主要基礎(chǔ)理論和方法的應(yīng)用技術(shù)實(shí)例所組成。全書遵循理論知識(shí)與實(shí)用技術(shù)的緊密結(jié)合、數(shù)學(xué)方法與實(shí)用效果的相互映證等編寫原則。本書可以作為檢測與控制、自動(dòng)化、計(jì)算機(jī)、機(jī)器人及人工智能等專業(yè)的高年級(jí)本科生和研究生的教材,也可作為專業(yè)技術(shù)人員的參考工具書。

智能視感學(xué)-英文版 目錄

ForewordPreface Base articleChapter 1 Introduction 1.1 Overview 1.1.1 Concept about the Visual Perception 1.1.2 The Development of Visual Perception Technology 1.1.3 Classification of Visual Perception System 1.2 A Visual Perception Hardware-base 1.2.1 iImage Sensing 1.2.2 Image Acquisition 1.2.3 PC Hardware Requirements for VPS ExercisesChapter 2 Foundations of Image Processing 2.1 Basic Processing Methods for Gray Image 2.1.1 Spatial Domain Enhancement Algorithm 2.1.2 Frequency Domain Enhancement Algorithm 2.2 Edge Detection of Gray Image 2.2.1 Threshold Edge Detection 2.2.2 Gradient-based Edge Detection 2.Z.3 Laplacian Operator 2.2.4 Canny Edge Operator 2.2.5 Mathematical Morphological Method 2.2.6 Brief Description of Other Algorithms 2.3 Binarization Processing and Segmentation of Image 2.3.1 General Description 2.3.2 Histogram-based Valley-point Threshold Image Binarization 2.3.3 OTSU Algorithm 2.3.4 Minimum Error Method of Image Segmentation 2.4 Color Image Enhancement 2.4.1 Color Space and Its Transformation 2.4.2 Histogram Equalization of Color Levels in Color Image 2.5 Color Image Edge Detection 2.5.1 Color Image Edge Detection Based on Gradient Extreme Value 2.5.2 Practical Method for Color Image Edge Detection ExercisesChapter 3 Mathematical Model of the Camera 3.1 Geometric Transformations of Image Space 3.1.1 Homogeneous Coordinates 3.1.2 Orthogonal Transformation and Rigid Body Transformation 3.1.3 Similarity Transformation and Affine Transformation 3.1.4 Perspective Transformation 3.2 Image Coordinate System and Its Transformation 3.2.1 Image Coordinate System 3.2.2 Image Coordinate Transformation 3.3 Common Method of Calibration Camera Parameters 3.3.1 Step Calibration Method 3.3.2 Calibration Algorithm Based on More than One Free Plane 3.3.3 Non-linear Distortion Parameter Calibration Method ExercisesChapter 4 Visual Perception Identification Algorithms 4.1 Image Feature Extraction and Identification Algorithm 4.1.1 Decision Theory Approach 4.1.2 Statistical Classification Method 4.1.3 Feature Classification Discretion Similarity about the Image Recognition Process 4.2 Principal Component Analysis 4.2.1 Principal Component Analysis Principle 4.2.2 Kernel Principal Component Analysis 4.2.3 PCA-based Image Recognition 4.3 Support Vector Machines 4.3.1 Main Contents of Statistical Learning Theory 4.3.2 Classification-Support Vector Machine ~ 4.3.3 Solution to the Nonlinear Regression Problem 4.3.4 Algorithm of Support Vector Machine 4.3.5 Image Characteristics Identification Based on SVM 4.4 Moment Invariants and Normalized Moments of Inertia 4.4.1 Moment Theory 4.4.2 Normalized Moment of Inertia 4.5 Template Matching and Similarity 4.5.1 Spatial Domain Description of Template Matching 4.5.2 Frequency Domain Description of Template Matching 4.6 Object Recognition Based on Color Feature 4.6.1 Image Colorimetric Processing 4.6.2 Construction of Color-Pool 4.6.3 Object Recognition Based on Color 4.7 Image Fuzzy Recognition Method 4.7.1 Fuzzy Content Feature and Fuzzy Similarity Degree 4.7.2 Extraction of Fuzzy Structure 4.7.3 Fuzzy Synthesis Decision-making of Image Matching ExercisesChapter 5 Detection Principle of Visual Perception 5.1 Single View Geometry and Detection Principle of Monocular Visual Perception 5.1.1 Single Vision Coordinate System 5.1.2 Basic Algorithm for Single Vision Detection 5.1.3 Engineering Technology Based on Single View Geometry 5.2 Detection Principle of Binocular Visual Perception 5.2.1 Two-view Geometry and Detection of Binocular Perception 5.2.2 Epipolar Geometry Principle 5.2.3 Determination Method of Spatial Coordinates 5.2.4 Camera Calibration in Binocular Visual Perception System 5.3 Theoretical Basis for Multiple Visual Perception Detection 5.3.1 Tensor Geometry Principle 5.3.2 Geometric Properties of Three Visual Tensor 5.3.3 Operation of Three-visual Tensor 5.3.4 Constraint Matching Feature Points of Three-visual Tensor 5.3.5 Three-visual Tensor Restrict the Three Visual Restraint Feature Line' s Matching Exercises Application articleChapter 6 Practical Technology of Intelligent Visual Perception 6.1 Automatic Monitoring System and Method of Load Limitation of The Bridge 6.1.1 The Basic Composition of The System 6.1.2 System Algorithm 6.2 Intelligent Identification System for Billet Number 6.2.1 System Control Program 6.2.2 Recognition Algorithm 6.3 Verification of Banknotes-Sorting Based on Image Information 6.3.1 Preprocessing of the Banknotes Image 6.3.2 Distinction Between Old and New Banknotes 6.3.3 Distinction of the Denomination and Direction of the Banknotes 6.3.4 Banknotes Fineness Detection 6.4 Intelligent Collision Avoidance Technology of Vehicle 6.4.1 Basic Hardware Configuration 6.4.2 Road Obstacle Recognition Algorithm 6.4.3 Smart Algorithm of Anti-collision to Pedestrians 6.5 Intelligent Visual Perception Control of Traffic Lights 6.5.1 Overview 6.5.2 The Core Algorithm of Intelligent Visual Perception Control of Traffic Lights ExercisesAppendix Least Square and Common Algorithms in Visual Perception Detection I.1 Basic Idea of the Algorithm I.2 Common Least Square Algorithms in Visual Perception Detection I.2.1 Least Square of Linear System of Equations I.2.2 Least Square Solution of Nonlinear Homogeneous System of Equations Theory and Method of BAYES Decision II.1 Introduction II.2 BAYES Classification Decision Mode II.2.1 BAYES Classification of Minimum Error Rate II.2.2 BAYES Classification Decision of Minimum RiskIII Statistical Learning and VC-dimension Theorem III.1 Bounding Theory and VC-dimension Principle III.2 Generalized Capability Bounding III.3 Structural Risk Minimization Principle of InductionIV Optimality Conditions on Constrained Nonlinear Programming Problem IV.1 Kuhn-Tucker Condition IV.1.1 Gordon Lemma IV.1.2 Fritz John Theorem IV.1.3 Proof of the Kuhn-Tucker Condition IV.2 Karush-Kuhn-Tucker ConditionSubject IndexReferences
展開全部
商品評(píng)論(1條)
  • 主題:是一本雙語教學(xué)的中文翻譯書

    中國人寫的一本雙語教學(xué)的翻譯書,翻譯一般化,最好可以看看英文的原版相關(guān)資料

    2015/5/1 14:11:28
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服