掃一掃
關(guān)注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學(xué):追尋崇高景觀
買過本商品的人還買了
量子相變-第2版 版權(quán)信息
- ISBN:9787510084478
- 條形碼:9787510084478 ; 978-7-5100-8447-8
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
量子相變-第2版 內(nèi)容簡介
《量子相變(第2版)(英文版)》講述量子相變是物質(zhì)的量子相在零溫下的一種相變。相比于經(jīng)典相變,量子相變可以僅通過在絕對零度下改變一些物理參數(shù)(如磁場或壓力)就可以實(shí)現(xiàn)。量子相變描述量子漲落導(dǎo)致的多體系統(tǒng)基態(tài)的突變,這可以是一個(gè)二級相變。在相變現(xiàn)象中,大量微觀粒子的相互作用與熱或量子漲落的競爭起到核心的作用,而相變的行為通常具有普適性,又與相互作用的細(xì)節(jié)無關(guān)。
量子相變-第2版 目錄
From the Preface to the first edition page xiii
Preface to the second edition xvii
Part I Introduction
1 Basic concepts
1.1 What is a quantum phase transition?
1.2 Nonzero temperature transitions and crossovers
1.3 Experimental examples
1.4 Theoretical models
1.4.1 Quantum Ising model
1.4.2 Quantum rotor model l
1.4.3 Physical realizations of quantum rotors
2 Overview
2.1 Quantum field theories
2.2 What's different about quantum transitions?
Part II A first course
3 Classical phase transitions
3.1 Mean-field theory
3.2 Landau theory
3.3 Fluctuations and perturbation theory
3.3.1 Gaussian integrals
3.3.2 Expansion for susceptibility
Exercises
4 The renormalization group
4.1 Gaussian theory
4.2 Momentum shell RG
4.3 Field renormalization
4.4 Correlation functions
Exercises
5 The quantum Ising model
5.1 Effective Hamiltonian method
5.2 Large-g expansion
5.2.1 One.particle states
5.2.2 TwO-particle states
5.3 Small-g expansion
5.3.1 d=
5.3.2 d=
5.4 Review
5.5 The classical Ising chain
5.5.1 The scaling limit
5.5.2 Universality
5.5.3 Mapping to a quantum model:Ising spin in a transverse field
5.6 Mapping of the quantum Ising chain to a classical Ising model Exercises
6 The quantum rotor modeI
6.1 Large-g expansion
6.2 Small-g expansion
6.3 The classical X Y chain and an O(2)quantum rotor
6.4 The classical Heisenberg chain and an O(3)quantum rotor
6.5 Mapping to classical field theories
6.6 Spectrum of quantum field theory
6.6.1 Paramagnet
6.6.2 Quantum critical point
6.6.3 Magnetic order
Exercises
7 Correlations,susceptibilities,and the quantum critical point
7.1 Spectral representation
7.1.1 Structure factor
7.1.2 Linear response
7.2 Correlations across the quantum critical point
7.2.1 Paramagnet
7.2.2 Quantum critical point
7.2.3 Magnetic order
Exercises
8 Broken symmetries
8.1 Discrete symmetry and surface tension
8.2 Continuous symmetry and the helicity modulus
8.2.1 0rder parameter correlations
8.3 The London equation and the superfluid density
8.3.1 The rotor model
Exercises
9 Boson Hubbard modeI
9.1 Mean-field theory
9.2 Coherent state path integral
9.2.1 Boson coherent states
9.3 Continuum quantum field theories
Exercises
Part ⅢNonzero temperatures
10 The Ising chain in a transverse field
10.1 Exact spectrum
10.2 Continuum theory and scaling transformations
10.3 Equal-time correlations of the order parameter
10.4 Finite temperature crossovers
10.4.1 Low T on the magnetically ordered side,△>0,T《△
10.4.2 Low T on the quantum paramagnetic side,△<0,T《「△」
10.4.3 Continuum high T,T》「△」
10.4.4 Summary
11 Quantum rotor models:large-N Iimit
11.1 Continuum theory and large-N limit
11.2 Zero temperature
11.2.1 Quantum paramagnet,g>gc
11.2.2 Critical point,g=gc
11.2.3 Magnetically ordered ground state,g<gc
11.3 Nonzero temperatures
11.3.1 Low T on the quantum paramagnetic side,g>gc,T《△+
11.3.2 High T,T》△+,△-
11.3.3 Low T on the magnetically ordered side,g<gf,T《△-
11.4 Numerical studies
12 Thed=1,0(N≥3)rotormodels
12.1 Scaling analysis at zero temperature
12.2 Low-temperature limit of the continuum theory,T《△+
……
Part Ⅳ Other models
Preface to the second edition xvii
Part I Introduction
1 Basic concepts
1.1 What is a quantum phase transition?
1.2 Nonzero temperature transitions and crossovers
1.3 Experimental examples
1.4 Theoretical models
1.4.1 Quantum Ising model
1.4.2 Quantum rotor model l
1.4.3 Physical realizations of quantum rotors
2 Overview
2.1 Quantum field theories
2.2 What's different about quantum transitions?
Part II A first course
3 Classical phase transitions
3.1 Mean-field theory
3.2 Landau theory
3.3 Fluctuations and perturbation theory
3.3.1 Gaussian integrals
3.3.2 Expansion for susceptibility
Exercises
4 The renormalization group
4.1 Gaussian theory
4.2 Momentum shell RG
4.3 Field renormalization
4.4 Correlation functions
Exercises
5 The quantum Ising model
5.1 Effective Hamiltonian method
5.2 Large-g expansion
5.2.1 One.particle states
5.2.2 TwO-particle states
5.3 Small-g expansion
5.3.1 d=
5.3.2 d=
5.4 Review
5.5 The classical Ising chain
5.5.1 The scaling limit
5.5.2 Universality
5.5.3 Mapping to a quantum model:Ising spin in a transverse field
5.6 Mapping of the quantum Ising chain to a classical Ising model Exercises
6 The quantum rotor modeI
6.1 Large-g expansion
6.2 Small-g expansion
6.3 The classical X Y chain and an O(2)quantum rotor
6.4 The classical Heisenberg chain and an O(3)quantum rotor
6.5 Mapping to classical field theories
6.6 Spectrum of quantum field theory
6.6.1 Paramagnet
6.6.2 Quantum critical point
6.6.3 Magnetic order
Exercises
7 Correlations,susceptibilities,and the quantum critical point
7.1 Spectral representation
7.1.1 Structure factor
7.1.2 Linear response
7.2 Correlations across the quantum critical point
7.2.1 Paramagnet
7.2.2 Quantum critical point
7.2.3 Magnetic order
Exercises
8 Broken symmetries
8.1 Discrete symmetry and surface tension
8.2 Continuous symmetry and the helicity modulus
8.2.1 0rder parameter correlations
8.3 The London equation and the superfluid density
8.3.1 The rotor model
Exercises
9 Boson Hubbard modeI
9.1 Mean-field theory
9.2 Coherent state path integral
9.2.1 Boson coherent states
9.3 Continuum quantum field theories
Exercises
Part ⅢNonzero temperatures
10 The Ising chain in a transverse field
10.1 Exact spectrum
10.2 Continuum theory and scaling transformations
10.3 Equal-time correlations of the order parameter
10.4 Finite temperature crossovers
10.4.1 Low T on the magnetically ordered side,△>0,T《△
10.4.2 Low T on the quantum paramagnetic side,△<0,T《「△」
10.4.3 Continuum high T,T》「△」
10.4.4 Summary
11 Quantum rotor models:large-N Iimit
11.1 Continuum theory and large-N limit
11.2 Zero temperature
11.2.1 Quantum paramagnet,g>gc
11.2.2 Critical point,g=gc
11.2.3 Magnetically ordered ground state,g<gc
11.3 Nonzero temperatures
11.3.1 Low T on the quantum paramagnetic side,g>gc,T《△+
11.3.2 High T,T》△+,△-
11.3.3 Low T on the magnetically ordered side,g<gf,T《△-
11.4 Numerical studies
12 Thed=1,0(N≥3)rotormodels
12.1 Scaling analysis at zero temperature
12.2 Low-temperature limit of the continuum theory,T《△+
……
Part Ⅳ Other models
展開全部
量子相變-第2版 作者簡介
Subir Sachdev(S. 薩奇德夫, 美國)是國際知名學(xué)者,在數(shù)學(xué)和物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。
書友推薦
- >
詩經(jīng)-先民的歌唱
- >
羅曼·羅蘭讀書隨筆-精裝
- >
唐代進(jìn)士錄
- >
自卑與超越
- >
小考拉的故事-套裝共3冊
- >
巴金-再思錄
- >
煙與鏡
- >
我從未如此眷戀人間
本類暢銷