-
>
湖南省志(1978-2002)?鐵路志
-
>
公路車寶典(ZINN的公路車維修與保養(yǎng)秘籍)
-
>
晶體管電路設(shè)計(下)
-
>
基于個性化設(shè)計策略的智能交通系統(tǒng)關(guān)鍵技術(shù)
-
>
德國克虜伯與晚清火:貿(mào)易與仿制模式下的技術(shù)轉(zhuǎn)移
-
>
花樣百出:貴州少數(shù)民族圖案填色
-
>
識木:全球220種木材圖鑒
非晶態(tài)和納米合金的化學(xué)鍍-制備原理.微觀結(jié)構(gòu)和理論 版權(quán)信息
- ISBN:9787122291608
- 條形碼:9787122291608 ; 978-7-122-29160-8
- 裝幀:暫無
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
非晶態(tài)和納米合金的化學(xué)鍍-制備原理.微觀結(jié)構(gòu)和理論 本書特色
本書全面闡述了非晶態(tài)和納米合金化學(xué)鍍的制備原理(鍍槽與穩(wěn)定性,鍍速及影響因素)、微觀結(jié)構(gòu)、機理、形成和形成區(qū)理論以及微觀理論。本書突出原創(chuàng),集中闡述了鐵基化學(xué)鍍合金鍍層與非晶合金鍍層形成和形成區(qū)理論等作者具有自主知識產(chǎn)權(quán)的成果,以及納米合金化學(xué)鍍、鍍速統(tǒng)一分析、表面形貌及分析、形成和微觀理論等內(nèi)容,反映了國際化學(xué)鍍發(fā)展的*內(nèi)容。 作者以獨特的視角講述并分析了化學(xué)鍍70 多年來的發(fā)展史。通過發(fā)現(xiàn)式寫法,在闡述內(nèi)容的同時,指出問題和發(fā)展方向,引導(dǎo)讀者深入思考。 本書可供材料、物理、化學(xué)等相關(guān)學(xué)科科研技術(shù)人員、研究生,對科研和工業(yè)關(guān)心的公職與公眾人士閱讀。
非晶態(tài)和納米合金的化學(xué)鍍-制備原理.微觀結(jié)構(gòu)和理論 內(nèi)容簡介
本書側(cè)重于化學(xué)鍍(EP)重要的實際工藝、原理和理論問題,從材料科學(xué)的角度來描述EP合金鍍層。具有以下幾個特點:
1. 內(nèi)容全面、獨特,同類書中未有
目前已出版的同類書中多介紹樣品或工件的前后處理、化學(xué)鍍設(shè)備、EP廢液的處理工藝,EP性能以及廣泛應(yīng)用等內(nèi)容,但從未從材料的角度來描寫鍍層。本書中的主要內(nèi)容恰好彌補了目前出版物中的空白,詳細介紹各種EP鍍層(純金屬、二元和多元合金,以及各種納米合金鍍層)的制備工藝,化學(xué)復(fù)合鍍,納米化學(xué)鍍,內(nèi)部成分和微結(jié)構(gòu),表面SEM結(jié)構(gòu),各種影響因素,鐵基化學(xué)鍍合金鍍層,綠色化學(xué)鍍,EP形成機理和動力學(xué),EP非晶態(tài)合金形成理論和形成區(qū),以及EP的微觀理論等。尤其鐵基化學(xué)鍍合金鍍層是作者具有自主知識產(chǎn)權(quán)的原創(chuàng)內(nèi)容。為了突出獨創(chuàng)特點,本書只論述了上述這些在同類圖書中沒有的內(nèi)容,同類書中已涉及的內(nèi)容全部舍棄。
2. 反映了國際化學(xué)鍍發(fā)展的新進展
從上世紀40年代發(fā)現(xiàn)化學(xué)鍍Ni至今,從未有人在論文或書中作出全面論述。本書以一章的內(nèi)容,將整個發(fā)展史劃分為4個階段,做了詳細論述(其縮寫內(nèi)容分兩期已發(fā)表在英國的Trans. IFM 雜志上)。此外,納米化學(xué)鍍,F(xiàn)e基合金化學(xué)鍍,綠色化學(xué)鍍,EP非晶合金鍍層的形成理論和形成區(qū)理論,以及EP的微觀理論,全都是嶄新的內(nèi)容,EP書籍中從未論述過的。書中都以專門的章來論述。
3. 內(nèi)容豐富,資料來自全球2100多篇原始論文。
4.發(fā)現(xiàn)式寫法,指出問題和發(fā)展方向,引導(dǎo)讀者思考
寫書很忌諱的恐怕就是只羅列出素材和數(shù)據(jù),沒有任何的解釋,沒有任何的來龍去脈、發(fā)展狀況,沒有指出尚存在的問題和可能的發(fā)展方向。本書作者極力避免在他的書中出現(xiàn)此等狀況。因此,除了清晰地描述和說明實驗事實、數(shù)據(jù)和結(jié)論之外,非常注重于定性定量解釋,往往還有作者的評述。差不多每個問題都盡可能的敘述其發(fā)展歷史和現(xiàn)狀。清晰地指出尚存在的問題和應(yīng)當努力的方向。目的不僅是讓讀者能夠掌握已有的EP知識,更希望能夠盡可能的引起他們的興趣和思考,引導(dǎo)他們自己去考慮進一步的問題,去解決尚未解決的問題。
非晶態(tài)和納米合金的化學(xué)鍍-制備原理.微觀結(jié)構(gòu)和理論 目錄
Part I
History of Electroless Plating
1. History–From the Discovery of Electroless Plating to the Present
1.1 Discovery of Electroless Plating 4
1.1.1 Early Works 4
1.1.2 Brenner and Riddell’s Work 6
1.2 Early Stage of Development (1940s–1959) 9
1.2.1 Research Works 9
1.2.2 Patents Issued 10
1.2.3 Preliminary Applications 12
1.3 Slow Growth of Period (1960–1979) 12
1.3.1 Improvement of the Plating Bath 13
1.3.2 Various Electroless Plating Metals 17
1.3.3 Electroless Plating Cu 20
1.3.4 Deposition Substrate 23
1.3.5 Application 26
1.4 Rapid Development of Period (1980–1999) 26
1.4.1 Studying the Nature of Electroless Plating 26
1.4.2 Studying the Properties of Electroless Plating Deposits 27
1.4.3 Large-Scale Application in Many Industries 31
1.4.4 Investigation of Ternary and Multicomponent Alloys and Composites 33
1.4.5 Electroless Plating Began and Developed Rapidly in China 34
1.4.6 Electroless Plating Fe–B Based Alloys Have Been Proposed and Developed 35
1.5 In-Depth Development and Nanoelectroless Plating Stage (2000–Present) 36
1.5.1 In-Depth Investigation of the Mechanism and Theory in Electroless Plating 38
1.5.2 Rapid Development of Nanoelectroless Plating 38
1.6 Summary and Prospect 39
References 40
Part II
Technology of Electroless Plating-Plating Bath, Critical Parameters, Deposition Rate,and Stability of Plating Bath
2. Electroless Plating Baths of Metals, Binary Alloys,and Multicomponent Alloys
2.1 General Consideration for Electroless Plating Bath Solution 51
2.2 Plating Bath of Electroless Pure Nickel and Nickel-Based Binary Alloys 53
2.2.1 Pure Ni and Co Metals 53
2.2.2 Ni–P 53
2.2.3 Ni–B 53
2.3 Cobalt-Based Binary Alloys 57
2.3.1 Co–P 57
2.3.2 Co–B 57
2.4 Cu and Copper-Based Binary Alloys 58
2.5 Au 58
2.6 Ag 58
2.7 Pd and Palladium-Based Binary Alloys 59
2.8 Pt and Platinum-Based Binary Alloys 59
2.9 Ru, Rh, Os, and Cr–P Binary Alloys 59
2.10 Group B Metals (Zn, Cd, In, Sn, Pb, As, Sb, and Bi) and a Few Binary Alloys of these Metals 62
2.11 Electroless Plating of Ternary Alloys 67
2.11.1 Ni–Me–P Alloy Plating Baths 67
2.11.2 Co–Me–P Alloy Plating Baths 74
2.11.3 Ni–Me–B Alloy Plating Baths 74
2.11.4 Co–Me–B Alloy Plating Baths 74
2.11.5 Other Ternary Alloy Plating Baths 89
2.12 Electroless Plating of Quaternary Alloys 90
2.12.1 Ni-Based Quaternary Alloy Plating Baths 90
2.12.2 Co-Based Quaternary Alloy Plating Baths 90
2.13 Electroless Plating Quinary and Multialloys 90
2.14 Summary 90
References 100
3. Electroless Composite Plating
3.1 General Considerations about ECP 109
3.2 Bath Solutions of ECP 110
3.2.1 Bath for Binary Alloy-Based ECP 110
3.2.2 Bath for Ternary Alloy-Based ECP 113
3.2.3 Bath for ECP With Two Kinds of Particles 116
3.3 Summary 116
References 138
4. Nano Electroless Plating
4.1 Bulk Nano EP Materials 144
4.1.1 Nano ECP 144
4.1.2 EP Three-Dimensional Nanostructured Materials (3D NSMs) 163
4.2 2D Nano EP Materials 172
4.2.1 EP 2D Nano Films 173
4.2.2 EP 2D Nanoplates 181
4.2.3 EP 2D Nanodisks 182
4.2.4 EP 2D Nanoshells and Nanosheets 183
4.2.5 EP 2D Nanowalls 184
4.2.6 EP 2D Nano Circles and Rings 185
4.2.7 EP 2D Nanohoneycomb 187
4.2.8 EP 2D Nanoline, Nanofi n Pattern, and 2D Nano Grating 188
4.3 Linear (1D) Nano EP Materials 191
4.3.1 EP Nanotubes 191
4.3.2 EP Nanowires 214
4.3.3 EP Nanorods 240
4.3.4 EP Nanobelts 246
4.4 Zero-Dimensional Nano EP Materials 250
4.4.1 EP Nanoparticles 251
4.4.2 EP Nanoparticle Arrays 262
4.4.3 EP Nanoparticles Other Than Spherical Shape 264
4.4.4 EP Core-Shell Nanoparticles 268
4.5 Summary 278
References 279
5. Electroless Plating Fe-Based Alloys
5.1 Why Electroless Plating Fe–B Alloys? 291
5.2 Discovery of EP Fe–B Alloys 292
5.2.1 The Plating Bath and Affective Parameters 294
5.2.2 Analysis of the Diffi culty in Obtaining EP Fe–B Alloys 295
5.2.3 Composition, Structure, and Properties of EP Fe–B Alloys 296
5.2.4 Formation Mechanism of EP Fe–B Alloys 303
5.2.5 Problems and Worthwhile Improvements for EP Fe–B Alloys 304
5.3 EP Binary Fe–B Alloys 305
5.4 EP Fe–B-Based Multicomponent Alloys 307
5.4.1 EP Fe–W–B Alloy Deposits 308
5.4.2 EP Fe–Mo–B Alloy Deposits 310
5.4.3 EP Fe–Sn–B Alloy Deposits 312
5.4.4 EP Fe–W–Mo–B Alloy Deposits 313
5.4.5 EP Fe–Ni–B Alloy Deposits 315
5.5 EP Fe–P Alloys 315
5.6 EP Fe–P-Based Ternary-Component Alloys 317
5.7 Summary 319
References 319
6. Impact Parameters and Deposition Rate
6.1 Effects of Plating Bath Components on Deposition Rate 324
6.1.1 Effect of Metal Salts 324
6.1.2 Effect of Reducing Agent 334
6.1.3 The Effect of Complexing Agent 337
6.1.4 Effect of Stabilizer 342
6.1.5 Effect of Accelerating Agent 349
6.1.6 The Effect of Surfactants 352
6.2 Effects of Operating Conditions 357
6.2.1 Effect of pH Value 357
6.2.2 Effect of Plating Temperature 361
6.2.3 Effect of Plating Time 362
6.3 Effects of other Technological Parameters 364
6.3.1 Effect of Stirring 364
6.3.2 Effect of Magnetic Field 372
6.3.3 Effect of Bath Loading 373
6.4 Summary 376
References 376
7. Green Electroless Plating
7.1 What is Green Electroless Plating? 383
7.2 Green Electroless Plating of EN 384
7.3 Green Electroless Plating on Cu 390
7.3.1 Hypophosphite 390
7.3.2 Glyoxylic Acid 393
7.3.3 DMAB 395
7.3.4 Sodium Bisulfate 397
7.3.5 Co2 and Fe2 397
7.3.6 Saccharide 400
7.3.7 Green Ligand for EP Cu 400
7.4 Green Electroless Plating Ag 401
7.5 Green Electroless Plating Au 403
7.6 Summary 406
References 406
Part III
Composition, Microscopic Structure,and Surface Morphology of Electroless Deposits
8. Composition and Microstructure
8.1 Composition and Microstructures of EP Alloy Deposits 415
8.1.1 Ni–P Alloy Deposits 415
8.1.2 Other EP Binary Deposits 440
8.1.3 Binary Alloy-Based ECP Deposits 449
8.2 Composition and Microstructures of EP Ternary and Multicomponent Alloy Deposits 451
8.2.1 Effects of Metal Salts on Composition and Structure in Ternary and Quaternary Alloy Coatings 452
8.2.2 Effects of Reductant on Composition and Structure in Ternary and Quaternary Alloy Coatings 455
8.2.3 Effects of Complexing Agents on Composition and Structure in Ternary and Quaternary Alloy Coatings 458
8.2.4 Effects of pH Value on Composition and Structure in Ternary and Quaternary Alloy Coatings 459
8.2.5 Effects of Temperature on Composition and Structure in Ternary and Quaternary Alloy Coatings 462
8.2.6 Infl uence of Ultrasound on Composition and Structure of EN Deposits 464
8.3 Crystallization of EP Amorphous Alloys 467
8.3.1 Crystallization Process and Products of EP Alloys Deposits 468
8.3.2 Crystallization Temperature and Activation Energy of EP Alloy Deposits 482
8.3.3 Crystallization Transformation Kinetics of EP Alloy Deposits 495
8.4 Summary 498
References 498
9. Surface Morphologies
9.1 Skeleton Understanding of Surface Morphologies of the EP Alloy Coatings 505
9.1.1 What Magnifi cation Can See the Morphology Clearly? 505
9.1.2 What Are the Morphological Features for Ni–P Based Alloy Deposits? 508
9.1.3 What is the Infl uence of Alloying Elements on the Surface Morphology of Ni–P Based Alloy Deposits? 509
9.1.4 Is there a Quantitative Relationship Between the Particle Size and Alloy Composition? 510
9.1.5 Should the Surface Morphology of Electroless Amorphous Coatings Be a Distinctive Pattern or Featureless? 512
9.2 The Effect of Alloying Elements on SEM 514
9.2.1 The Surface Morphology of EP Pure Metals 514
9.2.2 The Surface Morphology of EP Binary Alloy Films 517
9.2.3 The Surface Morphology of EP Multicomponent Alloy Films 520
9.3 Surface Morphology of ECP Alloy Deposits 531
9.4 Effects of Various Parameters on SEM 536
9.4.1 Effects of the Concentration of Metal Salts on SEM 536
9.4.2 Effects of Reductant on SEM 540
9.4.3 Effects of Complexing Agents on SEM 542
9.4.4 Effects of Stabilizers on SEM 544
9.4.5 Effects of Surfactants on SEM 549
9.4.6 Effects of pH Values on SEM 555
9.4.7 Effects of Plating Temperature on SEM 559
9.4.8 Effects of Plating Time on SEM 562
9.4.9 The Effects of Heat Treatment on SEM 570
9.5 Summary 573
References 573
Part IV
Kinetics, Mechanism, and Theory of Electroless Plating
10. Mechanism of Electroless Plating
10.1 The Existing Reaction Mechanism of EP Deposits 584
10.1.1 The So-Called Four Classical Mechanisms 584
10.1.2 Mixed Potential Theory 587
10.1.3 The Uniform Electrochemical Mechanism 596
10.2 Shortcomings and Defi ciencies of Existing Reaction Mechanisms of EP Deposits 597
10.3 Kinetics and Recent Progress 603
10.3.1 Real-Time Monitoring of Initial EP 605
10.3.2 Microstructure in Initial Stage of EP 609
10.3.3 Kinetics and Empirical Modeling of EP 615
10.4 Summary 623
References 625
11. Formation Theory and Formation Range of Electroless Amorphous Alloys
11.1 General Description of Formation of Electroless Amorphous Alloys 630
11.2 Formation Theory of Electroless Amorphous Alloys 633
11.2.1 A Brief Retrospect of the Quantitative Theory of Metallic Glass Formation 634
11.2.2 Formation Theory of Electroless Amorphous Alloy Systems 635
11.3 Formation Range of Electroless Amorphous Alloys: Experimental Facts and Theoretical Calculations 658
11.3.1 Experimental Data of RAF of EP Amorphous Alloys 658
11.3.2 Theoretical Calculation of RAF of EP Amorphous Alloys 668
11.4 Summary 685
References 685
12. Microscopic Theory of Electroless Plating
12.1 Why Use the Microscopic ab initio Theory to Investigate the EP Process? 694
12.2 Ab initio Computational Methods 695
12.2.1 Calculation Methods and Program Package 695
12.2.2 Selection of the Basis Sets 695
12.2.3 Selection of Oxidation Pathway 697
12.2.4 Solvation Effect 697
12.2.5 Catalytic Activity of Metal Surfaces 698
12.3 Theoretical Results Obtained by Ab Initio Methods 699
12.3.1 Reaction Mechanisms of EP Processes for Various Reductants 699
12.3.2 Detailed Investigation of Atomic Interaction Between Reductants and Metal Surfaces 711
12.3.3 The Role of Stabilizer and Plating Rate in EP 719
12.4 Summary and Prospective 724
References 725
Index 729
非晶態(tài)和納米合金的化學(xué)鍍-制備原理.微觀結(jié)構(gòu)和理論 作者簡介
張邦維,湖南大學(xué)應(yīng)用物理系,教授、博導(dǎo),在物理和材料科學(xué)領(lǐng)域從事教學(xué)和科研愈50年,他的研究集中于納米和非晶態(tài)材料, EP合金鍍層,合金熱力學(xué)和理論,EAM理論與應(yīng)用,其成果得到國內(nèi)外學(xué)術(shù)界的廣泛引用和承認。他曾獲得過德國馬普獎學(xué)金,并兩次在德國IPP(等離子體物理所)合作研究工作,也曾兩次在美國弗吉尼亞大學(xué)材料科學(xué)工程系合作研究。他和他的研究組在納米材料工作過20多年,集中于納米材料各種制備方法及其形成理論上。
- >
名家?guī)阕x魯迅:朝花夕拾
- >
羅曼·羅蘭讀書隨筆-精裝
- >
史學(xué)評論
- >
有舍有得是人生
- >
回憶愛瑪儂
- >
推拿
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
唐代進士錄