書(shū)馨卡幫你省薪 2024個(gè)人購(gòu)書(shū)報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)

Machine learning an algorithmic perspective

出版社:世界圖書(shū)出版公司出版時(shí)間:2022-08-01
開(kāi)本: 24cm 頁(yè)數(shù): 20,437頁(yè)
中 圖 價(jià):¥110.9(8.6折) 定價(jià)  ¥129.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車(chē) 收藏
運(yùn)費(fèi)6元,滿(mǎn)39元免運(yùn)費(fèi)
?新疆、西藏除外
本類(lèi)五星書(shū)更多>

Machine learning an algorithmic perspective 版權(quán)信息

Machine learning an algorithmic perspective 本書(shū)特色

本書(shū)有兩大特點(diǎn)使其成為國(guó)際上非常流行的機(jī)器學(xué)習(xí)教材。 一是實(shí)例來(lái)支持理論。本書(shū)涵蓋了神經(jīng)網(wǎng)絡(luò)、圖模型、強(qiáng)化學(xué)習(xí)、進(jìn)化算法、降維方法及優(yōu)化等機(jī)器學(xué)習(xí)重要方向。作者在保持學(xué)術(shù)嚴(yán)謹(jǐn)性和大量堆砌數(shù)學(xué)公式之間找到了完美的平衡,書(shū)中使用基于廣泛可用的數(shù)據(jù)集的實(shí)例(并提供Python的代碼)來(lái)充分展示理論,同時(shí)給學(xué)有余力的讀者指出可在哪找到進(jìn)一步深入學(xué)習(xí)的材料用于自學(xué)。 二是廣泛觸及各種學(xué)科和應(yīng)用。機(jī)器學(xué)習(xí)的多學(xué)科性因其適用于金融、生物學(xué)、醫(yī)學(xué)、物理、化學(xué)和工程學(xué)等領(lǐng)域而得到強(qiáng)調(diào)。作者從各種學(xué)科中選擇實(shí)例,并以易于理解的風(fēng)格編寫(xiě),彌合了學(xué)科之間的鴻溝,實(shí)現(xiàn)了理論與實(shí)踐的理想融合。

Machine learning an algorithmic perspective 內(nèi)容簡(jiǎn)介

  There have been some interesting developments in machine learning over the past four years,since the lst edition of this book came out. One is the rise of Deep Belief Networks as an area of real research interest(and business interest, as large internet-based companies look to snap up every small company working in the area), while another is the continuing work on statistical interpretations of machine learning algorithms. This second one is very good for the field as an area of research, but it does mean that computer science students, whose statistical background can be rather lacking, find it hard to get started in an area that they are sure should be of interest to them. The hope is that this book, focussing on the algorithms of machine learrung as it does, will help such students get a handle on the ideas,and that it will start them on a journey towards mastery of the relevant mathematics and statistics as well as the necessary programming and experimentation.  In addition, the libraries available for the Python language have continued to develop,so that there are now many more facilities available for the programmer. This has enabled me to provide a simple implementation of the Support Vector Maclune that can be used for experiments, and to simplify the code in a few other places. All of the code that was used to create the examples in the book is available at http://stephenmonika.net/(in the &Book' tab), and use and experimentation with any of this code, as part of any study on machine learning, is strongly encouraged.

Machine learning an algorithmic perspective 目錄

rologue Introduction Preliminaries Neurons, Neural Networks, and Linear Discriminants The Multi-Layer Perceptron Radial Basis Functions and Splines Dimensionality Reduction Probabilistic Learning Support Vector Machines Optimisation and Search Evolutionary Learning Reinforcement Learning Learning with Trees Decision by Committee: Ensemble Learning Unsupervised Learning Markov Chain Monte Carlo (MCMC) Methods Graphical Models Symmetric Weights and Deep Belief Networks Gaussian Processes Appendix A. Python
展開(kāi)全部

Machine learning an algorithmic perspective 作者簡(jiǎn)介

史蒂芬·馬斯蘭(Stephen Marsland)是新西蘭威靈頓維多利亞大學(xué)的數(shù)學(xué)與統(tǒng)計(jì)學(xué)院教授,他之前在梅西大學(xué)任教并擔(dān)任工程與先進(jìn)技術(shù)學(xué)院的研究生教導(dǎo)主任。他是新西蘭Te Pūnaha Matatini復(fù)雜系統(tǒng)與網(wǎng)絡(luò)卓越研究中心項(xiàng)目主管,領(lǐng)導(dǎo)復(fù)雜性、風(fēng)險(xiǎn)與不確定性等相關(guān)主題的研究工作。他是新西蘭數(shù)學(xué)學(xué)會(huì)的杰出會(huì)士,并兼任新西蘭數(shù)學(xué)研究所(NZMRI)所長(zhǎng)。

暫無(wú)評(píng)論……
書(shū)友推薦
本類(lèi)暢銷(xiāo)
返回頂部
中圖網(wǎng)
在線(xiàn)客服