-
>
宇宙、量子和人類心靈
-
>
考研數(shù)學專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
聲音簡史
-
>
浪漫地理學:追尋崇高景觀
廣義微分幾何 版權信息
- ISBN:9787519296087
- 條形碼:9787519296087 ; 978-7-5192-9608-7
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
廣義微分幾何 本書特色
◎媒體推薦/名人推薦/讀者推薦 Diffeology is a natural extension of differential geometry that covers a wide spectrum of objects, ranging from singular spaces of any kind to infinite dimensional spaces, and sometimes mixing the two. With its developments in higher homotopy theory, fiber bundles, modeling spaces, Cartan-de-Rham calculus, moment map and symplectic constructions, to begin with, diffeology spans a wide range of traditional fields, treating geometrical objects that are or are not manifolds on an equal footing in a common framework. This textbook establishes the foundations of the theory, and develops the main areas of application. These are illustrated by a series of examples, chosen explicitly because they are not covered by traditional differential geometry. The advantage of diffeology comes from the conjunction of two strong properties: first, diffeology is stable by all set-theoretic operations: sum, product, subset and quotient. It is said to be a complete and co-complete category. It is also Cartesian closed, the set of smooth maps having itself a natural diffeology. Second, and perhaps more importantly, diffeology even deals with non-Hausdorff quotient spaces in a non-trivial way, as is the case with irrational tori. This specific property becomes crucial for new constructions and is at the origin of the generalization of theorems that do not exist otherwise.
廣義微分幾何 內(nèi)容簡介
本書作者是PatrickIglesias-Zemnour是法國馬賽數(shù)學研究所研究員(2019年退休),目前是以色列耶路撒冷希伯來大學常期的客座教授。主要從事辛幾何和廠義流形的研究。2013年在美國數(shù)學會MathematicalSurveysandMonographs系列叢書**次發(fā)表了關于廣義流形的系統(tǒng)研究的專著!稄V義流形》是該學科的**本教科書,由美國數(shù)學協(xié)會出版,奠定了在理論物理中使用的微分幾何主要領域的基礎:可微性、卡坦微分學、同源和上同源、不同群、纖維束和連接等。書中還配有習題和解答有助于讀者更好地學習。
廣義微分幾何 目錄
◎圖書目錄
Preface
1. Diffeology and Diffeological Spaces
2. Locality and Diffeologies
3. Diffeological Vector Spaces
4. Modeling Spaces, Manifolds, etc.
5. Homotopy of Diffeological Spaces
6. Cartan-De Rham Calculus
7. Diffeological Groups
8. Diffeological Fiber Bundles
9. Symplectic Diffeology
Solutions to Exercises
Afterword
Notation and Vocabulary
Index
Bibliography
廣義微分幾何 作者簡介
◎作者簡介 帕特里克·伊格萊西亞斯-澤穆爾(Patrick Iglesias-Zemmour)是法國馬賽數(shù)學研究所研究員,也是以色列希伯來大學的長期客座教授。他以辛幾何和廣義微分幾何的研究而聞名。他所著的《廣義微分幾何》(Diffeology)是該領域全世界的第一部教材。
- >
有舍有得是人生
- >
推拿
- >
巴金-再思錄
- >
月亮與六便士
- >
山海經(jīng)
- >
中國人在烏蘇里邊疆區(qū):歷史與人類學概述
- >
經(jīng)典常談
- >
羅庸西南聯(lián)大授課錄