書馨卡幫你省薪 2024個(gè)人購書報(bào)告 2024中圖網(wǎng)年度報(bào)告
歡迎光臨中圖網(wǎng) 請 | 注冊

數(shù)論-第1卷-(影印版)

出版社:世界圖書出版公司出版時(shí)間:2019-03-01
開本: 16開 頁數(shù): 650
中 圖 價(jià):¥153.9(8.6折) 定價(jià)  ¥179.0 登錄后可看到會員價(jià)
加入購物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書更多>

數(shù)論-第1卷-(影印版) 版權(quán)信息

數(shù)論-第1卷-(影印版) 本書特色

《數(shù)論》分為2卷,是Springer“數(shù)學(xué)研究生教材”叢書之239和240卷,是一套面向研究生的數(shù)論教程,主旨是全面介紹丟番圖方程的解,包括多項(xiàng)式方程、有理數(shù)和代數(shù)數(shù)論等,其中特別強(qiáng)調(diào)了算術(shù)代數(shù)幾何的現(xiàn)代理論。全書各章共有530例習(xí)題,部分習(xí)題有提示。

數(shù)論-第1卷-(影印版) 內(nèi)容簡介

《數(shù)論》分為2卷,是Springer“數(shù)學(xué)研究生教材”叢書之239和240卷,是一套面向研究生的數(shù)論教程,主旨是全面介紹丟番圖方程的解,包括多項(xiàng)式方程、有理數(shù)和代數(shù)數(shù)論等,其中特別強(qiáng)調(diào)了算術(shù)代數(shù)幾何的現(xiàn)代理論。全書各章共有530例習(xí)題,部分習(xí)題有提示。 本書是其中的第1卷,由H.科恩著。共分2部分8章,內(nèi)容包括工具、丟番圖方程。

數(shù)論-第1卷-(影印版) 目錄

Volume I Preface 1. Introduction to Diophantine Equations 1.1 Introduction 1.1.1 Examples of Diophantine Problems 1.1.2 Local Methods 1.1.3 Dimensions 1.2 Exercises for Chapter 1 Part I. Tools 2. Abelian Groups, Lattices, and Finite Fields 2.1 Finitely Generated Abelian Groups 2.1.1 Basic Results 2.1.2 Description of Subgroups 2.1.3 Characters of Finite Abelian Groups 2.1.4 The Groups (Z/mZ)* 2.1.5 Dirichlet Characters 2.1.6 Gauss Sums 2.2 The Quadratic Reciprocity Law 2.2.1 The Basic Quadratic Reciprocity Law 2.2.2 Consequences of the Basic Quadratic Reciprocity Law 2.2.3 Gauss's Lemma and Quadratic Reciprocity 2.2.4 Real Primitive Characters 2.2.5 The Sign of the Quadratic Gauss Sum 2.3 Lattices and the Geometry of Numbers 2.3.1 Definitions 2.3.2 Hermite's Inequality 2.3.3 LLL-Reduced Bases 2.3.4 The LLL Algorithms 2.3.5 Approximation of Linear Forms 2.3.6 Minkowski's Convex Body Theorem 2.4 Basic Properties of Finite Fields 2.4.1 General Properties of Finite Fields 2.4.2 Galois Theory of Finite Fields 2.4.3 Polynomials over Finite Fields 2.5 Bounds for the Number of Solutions in Finite Fields 2.5.1 The Chevalley-Warning Theorem 2.5.2 Gauss Sums for Finite Fields 2.5.3 Jacobi Sums for Finite Fields 2.5.4 The Jacobi Sums J(x1,x2) 2.5.5 The Number of Solutions of Diagonal Equations 2.5.6 The Well Bounds 2.5.7 The Weil Conjectures (Deligne's Theorem) 2.6 Exercises for Chapter 2 3. Basic Algebraic Number Theory 3.1 Field-Theoretic Algebraic Number Theory 3.1.1 Galois Theory 3.1.2 Number Fields 3.1.3 Examples 3.1.4 Characteristic Polynomial, Norm, Trace 3.1.5 Noether's Lemma 3.1.6 The Basic Theorem of Kummer Theory 3.1.7 Examples of the Use of Kummer Theory 3.1.8 Artin-Schreier Theory 3.2 The Normal Basis Theorem 3.2.1 Linear Independence and Hilbert's Theorem 90 3.2.2 The Normal Basis Theorem in the Cyclic Case 3.2.3 Additive Polynomials 3.2.4 Algebraic Independence of Homomorphisms 3.2.5 The Normal Basis Theorem 3.3 Ring-Theoretic Algebraic Number Theory 3.3.1 Gauss's Lemma on Polynomials 3.3.2 Algebraic Integers 3.3.3 Ring of Integers and Discriminant 3.3.4 Ideals and Units 3.3.5 Decomposition of Primes and Ramification 3.3.6 Galois Properties of Prime Decomposition 3.4 Quadratic Fields 3.4.1 Field-Theoretic and Basic Ring-Theoretic Properties 3.4.2 Results and Conjectures on Class and Unit Groups 3.5 Cyclotomic Fields 3.5.1 Cyclotomic Polynomials 3.5.2 Field-Theoretic Properties of Q(Sn) 3.5.3 Ring-Theoretic Properties 3.5.4 The Totally Real Subfield of Q(Spk ) …… 4. p-adic Fields 5. Quadratic Forms and Local-Global Principles Part II. Diophantine Equations 6. Some Diophantine Equations 7. Elliptic Curves 8. Diophantine Aspects of Elliptic Curves Bibliography Index of Notation Index of Names General Index
展開全部

數(shù)論-第1卷-(影印版) 作者簡介

這套經(jīng)典研究生教材的作者作者Henri Cohen(H.科恩,法國), 是法國Institue de Mathématiques de Bordeaux的教授。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服